\[\boxed{\mathbf{683}\mathbf{.}}\]
\[\sqrt{- 4\cos x \bullet \cos{2x}} = \sqrt{7\sin{2x}}\]
\[- 4\cos x \bullet \cos{2x} = 7\sin{2x}\]
\[2 - 4\sin^{2}x + 7\sin x = 0\]
\[y = \sin x:\]
\[2 - 4y^{2} + 7y = 0\]
\[4y^{2} - 7y - 2 = 0\]
\[D = 49 + 32 = 81\]
\[y_{1} = \frac{7 - 9}{4 \bullet 2} = - \frac{2}{8} = - \frac{1}{4}\$\]
\[y_{2} = \frac{7 + 9}{4 \bullet 2} = 2.\]
\[1)\ \cos x = 0\]
\[x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[2)\ \sin x = - \frac{1}{4}\]
\[x = ( - 1)^{n + 1} \bullet \arcsin\frac{1}{4} + \pi n.\]
\[3)\ \sin x = 2\]
\[корней\ нет.\]
\[n - нечетное:\]
\[x = \arcsin\frac{1}{4} + \pi(2n + 1).\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n;\ \ \]
\[\arcsin\frac{1}{4} + \pi(2n + 1).\]