\[\boxed{\mathbf{682}\mathbf{.}}\]
\[\cos^{2}x + \cos^{2}{2x} + \cos^{2}{3x} = \frac{3}{2}\]
\[\cos^{2}x + \cos^{2}{2x} + \cos^{2}{3x} =\]
\[\frac{1}{2}\left( \cos{2x} + \cos{4x} + \cos{6x} \right) = 0\]
\[\cos{2x} + \cos{6x} + \cos{4x} = 0\]
\[2 \bullet \cos\frac{6x - 2x}{2} \bullet \cos\frac{6x + 2x}{2} + \cos{4x} = 0\]
\[2 \bullet \cos{2x} \bullet \cos{4x} + \cos{4x} = 0\]
\[\cos{4x} \bullet \left( 2\cos{2x} + 1 \right) = 0\]
\[1)\ \cos{4x} = 0\]
\[4x = \arccos 0 + \pi n\]
\[4x = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{4} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{8} + \frac{\text{πn}}{4}.\]
\[2)\ 2\cos{2x} + 1 = 0\]
\[2\cos{2x} = - 1\]
\[\cos{2x} = - \frac{1}{2}\]
\[2x = \pm \left( \pi - \arccos\frac{1}{2} \right) + 2\pi n\]
\[2x = \pm \left( \pi - \frac{\pi}{3} \right) + 2\pi n\]
\[2x = \pm \frac{2\pi}{3} + 2\pi n\]
\[x = \frac{1}{2} \bullet \left( \pm \frac{2\pi}{3} + 2\pi n \right)\]
\[x = \pm \frac{\pi}{3} + \pi n.\]
\[Ответ:\ \ \frac{\pi}{8} + \frac{\text{πn}}{4};\ \ \pm \frac{\pi}{3} + \pi n.\]