\[\boxed{\mathbf{654}\mathbf{.}}\]
\[1)\sin^{2}x + 2\sin x > 0\]
\[Пусть\ y = \sin x,\ тогда:\]
\[y^{2} + 2y > 0\]
\[y(y + 2) > 0\]
\[y < - 2\ или\ y > 0.\]
\[1)\ \sin x < - 2\]
\[решений\ нет.\]
\[\sin x \neq - 2\]
\[x \neq ( - 1)^{n + 1} \bullet \arcsin 2 + \pi n.\]
\[2)\ \sin x > 0\]
\[\arcsin 0 + 2\pi n < x\]
\[x < \pi - \arcsin 0 + 2\pi n\]
\[2\pi n < x < \pi + 2\pi n.\]
\[Ответ:\ \ 2\pi n < x < \pi + 2\pi n.\]
\[2)\cos^{2}x - \cos x < 0\]
\[y = \cos x:\]
\[y^{2} - y < 0\]
\[y(y - 1) < 0\]
\[0 < y < 1.\]
\[1)\ \cos x > 0\]
\[- \arccos 0 + 2\pi n < x\]
\[x < \arccos a + 2\pi n\]
\[- \frac{\pi}{2} + 2\pi n < x < \frac{\pi}{2} + 2\pi n.\]
\[2)\ \cos x < 1\]
\[при\ любом\ x.\]
\[\cos x \neq 0\]
\[x \neq \arccos 1 + 2\pi n = 2\pi n.\]
\[Ответ:\ - \frac{\pi}{2} + 2\pi n < x < 2\pi n;\ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }2\pi n < x < \frac{\pi}{2} + 2\pi n.\]