\[\boxed{\mathbf{650}\mathbf{.}}\]
\[1)\sin x > \frac{1}{2}\]
\[\arcsin\frac{1}{2} + 2\pi n < x\]
\[x < \pi - \arcsin\frac{1}{2} + 2\pi n\]
\[\frac{\pi}{6} + 2\pi n < x < \pi - \frac{\pi}{6} + 2\pi n.\]
\[Ответ:\ \ \]
\[\frac{\pi}{6} + 2\pi n < x < \frac{5\pi}{6} + 2\pi n.\ \]
\[2)\sin x \leq \frac{\sqrt{2}}{2}\]
\[- \pi - \arcsin\frac{\sqrt{2}}{2} + 2\pi n \leq x\]
\[x \leq \arcsin\frac{\sqrt{2}}{2} + 2\pi n\]
\[- \pi - \frac{\pi}{4} + 2\pi n \leq x \leq \frac{\pi}{4} + 2\pi n.\]
\[Ответ:\ \]
\[- \frac{5\pi}{4} + 2\pi n \leq x \leq \frac{\pi}{4} + 2\pi n.\]
\[3)\sin x \leq - \frac{\sqrt{2}}{2}\]
\[- \pi - \arcsin\left( - \frac{\sqrt{2}}{2} \right) + 2\pi n \leq x\]
\[x \leq \arcsin\left( - \frac{\sqrt{2}}{2} \right) + 2\pi n\]
\[- \pi + \arcsin\frac{\sqrt{2}}{2} + 2\pi n \leq x\]
\[x \leq - \arcsin\frac{\sqrt{2}}{2} + 2\pi n\]
\[- \pi + \frac{\pi}{4} + 2\pi n \leq x \leq - \frac{\pi}{4} + 2\pi n.\]
\[Ответ:\ \ \]
\[- \frac{3\pi}{4} + 2\pi n \leq x \leq - \frac{\pi}{4} + 2\pi n.\]
\[4)\sin x > - \frac{\sqrt{3}}{2}\]
\[\arcsin\left( - \frac{\sqrt{3}}{2} \right) + 2\pi n < x\]
\[x < \pi - \arcsin\left( - \frac{\sqrt{3}}{2} \right) + 2\pi n\]
\[- \arcsin\frac{\sqrt{3}}{2} + 2\pi n < x\]
\[x < \pi + \arcsin\frac{\sqrt{3}}{2} + 2\pi n\]
\[- \frac{\pi}{3} + 2\pi n < x < \pi + \frac{\pi}{3} + 2\pi n.\]
\[Ответ:\ \]
\[- \frac{\pi}{3} + 2\pi n < x < \frac{4\pi}{3} + 2\pi n.\]