Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 561

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 561

\[\boxed{\mathbf{561}\mathbf{.}}\]

\[1)\ \sin a \bullet \cos a =\]

\[= \frac{1}{2} \bullet 2\sin a \bullet \cos a = \frac{1}{2}\sin{2a} =\]

\[= - \frac{1}{2} + \frac{1}{2}\sin a + \frac{1}{2} =\]

\[= - \frac{1}{2}\left( 1 - \sin{2a} \right) + \frac{1}{2} =\]

\[= - \frac{1}{2}\left( \sin a - \cos a \right)^{2} + \frac{1}{2} =\]

\[= - \frac{1}{2} \bullet \left( \frac{1}{2} \right)^{2} + \frac{1}{2} = - \frac{1}{2} \bullet \frac{1}{4} + \frac{1}{2} =\]

\[= - \frac{1}{8} + \frac{4}{8} = \frac{3}{8}\]

\[2)\ \frac{\sin^{3}a - \cos^{3}a}{\sin a \bullet \cos a} =\]

\[= \frac{\frac{1}{2} \bullet \left( 1 + \frac{3}{8} \right)}{\frac{3}{8}} = \frac{8}{2 \bullet 3} \bullet \left( \frac{8}{8} + \frac{3}{8} \right) =\]

\[= \frac{4}{3} \bullet \frac{11}{8} = \frac{11}{3 \bullet 2} = \frac{11}{6} = 1\frac{5}{6}\]

\[Ответ:\ \ 1\frac{5}{6}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам