\[\boxed{\mathbf{525}\mathbf{.}}\]
\[1)\cos{150{^\circ}} = \cos(90{^\circ} + 60{^\circ}) =\]
\[= - \sin{60{^\circ}} = - \frac{\sqrt{3}}{2}\]
\[2)\sin{135{^\circ}} = \sin(180{^\circ} - 135{^\circ}) =\]
\[= \sin{45{^\circ}} = \frac{\sqrt{2}}{2}\]
\[3)\ ctg\ 135{^\circ} = ctg(90{^\circ} + 45{^\circ}) =\]
\[= - tg\ 45{^\circ} = - 1\]
\[4)\cos{120{^\circ}} = \cos(90{^\circ} + 30{^\circ}) =\]
\[= - \sin{30{^\circ}} = - \frac{1}{2}\]
\[5)\cos{225{^\circ}} = \cos(180{^\circ} + 45{^\circ}) =\]
\[= - \cos{45{^\circ}} = - \frac{\sqrt{2}}{2}\]
\[6)\sin{210{^\circ}} = \sin(180{^\circ} + 30{^\circ}) =\]
\[= - \sin{30{^\circ}} = - \frac{1}{2}\]
\[7)\ ctg\ 240{^\circ} =\]
\[= \text{ctg\ }(180{^\circ} + 60{^\circ}) = ctg\ 60{^\circ} =\]
\[= \frac{\sqrt{3}}{3}\]
\[8)\sin{315{^\circ}} = \sin(270{^\circ} + 45{^\circ}) =\]
\[= - \cos{45{^\circ}} = - \frac{\sqrt{2}}{2}\]