\[\boxed{\mathbf{491.}}\]
\[1)\cos(a - \beta) - \cos(a + \beta) =\]
\[= \frac{2}{4}\left( \cos^{2}a - \sin^{2}a \right) + \frac{1}{2}\sin^{2}a =\]
\[= \frac{1}{2}\cos^{2}a - \frac{1}{2}\sin^{2}a + \frac{1}{2}\sin^{2}a =\]
\[= \frac{1}{2}\cos^{2}a\]
\[3)\cos{3a} + \sin a \bullet \sin{2a} =\]
\[= \cos(a + 2a) + \sin a \bullet \sin{2a} =\]
\[4)\cos{2a} - \cos a \bullet \cos{3a} =\]
\[= \sin a \bullet \sin{3a}\]