\[\boxed{\mathbf{488.}}\]
\[\sin a = - \frac{3}{5}\text{\ \ }и\ \ \frac{3\pi}{2} < a < 2\pi;\]
\[\sin\beta = \frac{8}{17}\text{\ \ }и\ \ 0 < \beta < \frac{\pi}{2}.\]
\[Точка,\ соответствующая\ \]
\[повороту\ на\ угол\ a,\ лежит\ \]
\[в\ \text{IV\ }четверти:\]
\[\cos a = \sqrt{1 - \sin^{2}a} =\]
\[= \sqrt{1 - \left( - \frac{3}{5} \right)^{2}} = \sqrt{\frac{25}{25} - \frac{9}{25}} =\]
\[= \sqrt{\frac{16}{25}} = \frac{4}{5}\]
\[Точка,\ соответствующая\ \]
\[повороту\ на\ угол\ \beta,\ \]
\[лежит\ в\ \text{I\ }четверти:\]
\[\cos\beta = \sqrt{1 - \sin^{2}\beta} =\]
\[= \sqrt{1 - \left( \frac{8}{17} \right)^{2}} = \sqrt{\frac{289}{289} - \frac{64}{289}} =\]
\[= \sqrt{\frac{225}{289}} = \frac{15}{17}\]
\[Получаем:\]
\[1)\ \cos(a + \beta) =\]
\[= \cos a \bullet \cos\beta - \sin a \bullet \sin\beta\]
\[\cos(a + \beta) = \frac{4}{5} \bullet \frac{15}{17} + \frac{3}{5} \bullet \frac{8}{17} =\]
\[= \frac{60}{85} + \frac{24}{85} = \frac{84}{85}\]
\[2)\ \cos(a - \beta) =\]
\[= \cos a \bullet \cos\beta + \sin a \bullet \sin\beta\]
\[\cos(a - \beta) = \frac{4}{5} \bullet \frac{15}{17} - \frac{3}{5} \bullet \frac{8}{17} =\]
\[= \frac{60}{85} - \frac{24}{85} = \frac{36}{85}\]