\[\boxed{\mathbf{402.}}\]
\[1)\ 3 + 2\log_{x + 1}3 = 2\log_{3}(x + 1)\]
\[Пусть\ y = \log_{3}(x + 1):\]
\[3 + \frac{2}{y} - 2y = 0\ \ \ \ \ | \bullet y\]
\[3y + 2 - 2y^{2} = 0\]
\[2y^{2} - 3y - 2 = 0\]
\[D = 3^{2} + 4 \bullet 2 \bullet 2 = 9 + 16 = 25\]
\[y_{1} = \frac{3 - 5}{2 \bullet 2} = - \frac{2}{4} = - \frac{1}{2};\]
\[y_{2} = \frac{3 + 5}{2 \bullet 2} = \frac{8}{4} = 2.\]
\[1)\ \log_{3}(x + 1) = - \frac{1}{2}\]
\[\log_{3}(x + 1) = \log_{3}3^{- \frac{1}{2}}\]
\[x + 1 = 3^{- \frac{1}{2}}\]
\[x = \frac{1}{3^{\frac{1}{2}}} - 1\]
\[x = \frac{1}{\sqrt{3}} - 1.\]
\[2)\ \log_{3}(x + 1) = 2\]
\[\log_{3}(x + 1) = \log_{3}3^{2}\]
\[x + 1 = 3^{2}\]
\[x = 9 - 1\]
\[x = 8.\]
\[имеет\ смысл\ при:\]
\[x + 1 > 0 \Longrightarrow x > - 1.\]
\[Ответ:\ \ x_{1} = \frac{1}{\sqrt{3}} - 1;\ \ x_{2} = 8.\ \]
\[2)\ 1 + 2\log_{x + 2}5 = \log_{5}(x + 2)\]
\[Пусть\ y = \log_{5}(x + 2):\]
\[1 + \frac{2}{y} - y = 0\ \ \ \ \ | \bullet y\]
\[y + 2 - y^{2} = 0\]
\[y^{2} - y - 2 = 0\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[y_{1} = \frac{1 - 3}{2} = - 1;\text{\ \ }\]
\[y_{2} = \frac{1 + 3}{2} = 2.\]
\[1)\ \log_{5}(x + 2) = - 1\]
\[\log_{5}(x + 2) = \log_{5}5^{- 1}\]
\[x + 2 = 5^{- 1}\]
\[x = \frac{1}{5} - 2\]
\[x = 0,2 - 2\]
\[x = - 1,8.\]
\[2)\ \log_{5}(x + 2) = 2\]
\[\log_{5}(x + 2) = \log_{5}5^{2}\]
\[x + 2 = 5^{2}\]
\[x = 25 - 2\]
\[x = 23.\]
\[имеет\ смысл\ при:\]
\[x + 2 > 0 \Longrightarrow x > - 2.\]
\[Ответ:\ \ x_{1} = - 1,8;\ \ x_{2} = 23.\]