\[\boxed{\mathbf{401.}}\]
\[1)\ x^{\lg 9} + 9^{\lg x} = 6\]
\[x^{\frac{\log_{x}9}{\log_{x}10}} + 9^{\lg x} = 6\]
\[\left( x^{\log_{x}9} \right)^{\frac{1}{\log_{x}10}} + 9^{\lg x} = 6\]
\[9^{\frac{1}{\log_{x}10}} + 9^{\lg x} = 6\]
\[9^{\frac{\log_{x}x}{\log_{x}10}} + 9^{\lg x} = 6\]
\[9^{\lg x} + 9^{\lg x} = 6\]
\[2 \bullet 9^{\lg x} = 6\]
\[9^{\lg x} = 3\]
\[\log_{9}9^{\lg x} = \log_{9}3\]
\[\lg x = \log_{9}9^{\frac{1}{2}}\]
\[\lg x = \frac{1}{2}\]
\[\lg x = \lg 10^{\frac{1}{2}}\]
\[x = 10^{\frac{1}{2}} = \sqrt{10}\]
\[Ответ:\ \ x = \sqrt{10}.\]
\[2)\ x^{3\lg^{3}x - \frac{2}{3}\lg x} = 100\sqrt[3]{10}\]
\[\lg x^{3\lg^{3}x - \frac{2}{3}\lg x} = \lg\left( 100\sqrt[3]{10} \right)\]
\[\left( 3\lg^{3}x - \frac{2}{3}\lg x \right) \bullet \lg x =\]
\[= \lg\left( 10^{2} \bullet 10^{\frac{1}{3}} \right)\]
\[3\lg^{4}x - \frac{2}{3}\lg^{2}x = \lg 10^{\frac{7}{3}}\]
\[3\lg^{4}x - \frac{2}{3}\lg^{2}x = \frac{7}{3}\]
\[Пусть\ y = \lg^{2}x:\]
\[3y^{2} - \frac{2}{3}y = \frac{7}{3}\ \ \ \ \ | \bullet 3\]
\[9y^{2} - 2y - 7 = 0\]
\[D = 2^{2} + 4 \bullet 7 \bullet 9 =\]
\[= 4 + 252 = 256\]
\[y_{1} = \frac{2 - 16}{2 \bullet 9} = - \frac{14}{18} = - \frac{7}{8};\]
\[y_{2} = \frac{2 + 16}{2 \bullet 9} = \frac{18}{18} = 1.\]
\[1)\ \lg^{2}x = - \frac{7}{8}\]
\[нет\ корней.\]
\[2)\ \lg^{2}x = 1\]
\[\lg x = \pm 1\]
\[\lg x = \lg 10^{\pm 1}\]
\[x_{1} = 10^{- 1} = 0,1\]
\[x_{2} = 10^{1}\]
\[x = 10.\]
\[Ответ:\ \ x_{1} = 0,1;\ \ x_{2} = 10.\]