\[\boxed{\mathbf{378}\mathbf{.}}\]
\[1)\log_{\frac{1}{2}}(7 - 8x) = - 2\]
\[\log_{\frac{1}{2}}(7 - 8x) = \log_{\frac{1}{2}}\left( \frac{1}{2} \right)^{- 2}\]
\[7 - 8x = \left( \frac{1}{2} \right)^{- 2}\]
\[7 - 8x = 2^{2}\]
\[7 - 8x = 4\]
\[8x = 3\ \]
\[x = \frac{3}{8}.\]
\[имеет\ смысл\ при:\]
\[7 - 8x > 0\]
\[8x < 7\]
\[x < \frac{7}{8}.\]
\[Ответ:\ \ x = \frac{3}{8}.\]
\[2)\lg\left( x^{2} - 2 \right) = \lg x\]
\[x^{2} - 2 = x\]
\[x^{2} - x - 2 = 0\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[x_{1} = \frac{1 - 3}{2} = - 1;\text{\ \ }\]
\[x_{2} = \frac{1 + 3}{2} = 2.\]
\[имеет\ смысл\ при:\]
\[1)\ x^{2} - 2 > 0\]
\[x^{2} > 2\]
\[x < - \sqrt{2};\text{\ \ }x > \sqrt{2}.\]
\[2)\ x > 0\]
\[Ответ:\ \ x = 2.\]