\[\boxed{\mathbf{371}\mathbf{.}}\]
\[1)\ (0,1)^{- \lg{0,3}} = \left( (0,1)^{- 1} \right)^{\lg{0,3}} =\]
\[= 10^{\lg{0,3}} = 0,3\]
\[2)\ 10^{- \lg 4} = \left( 10^{\lg 4} \right)^{- 1} = 4^{- 1} =\]
\[= \frac{1}{4} = 0,25\]
\[3)\ 5^{- \log_{5}3} = \left( 5^{\log_{5}3} \right)^{- 1} =\]
\[= 3^{- 1} = \frac{1}{3}\]
\[4)\ \left( \frac{1}{6} \right)^{- \log_{6}4} = \left( \left( \frac{1}{6} \right)^{- 1} \right)^{\log_{6}4} =\]
\[= 6^{\log_{6}4} = 4\ \ \]