\[\boxed{\mathbf{362}\mathbf{.}}\]
\[1)\log_{\frac{1}{3}}{\log_{2}x^{2}} > 0\]
\[\log_{\frac{1}{3}}{\log_{2}x^{2}} > \log_{\frac{1}{3}}1\]
\[\log_{2}x^{2} < 1\]
\[\log_{2}x^{2} < \log_{2}2\]
\[x^{2} < 2\]
\[- \sqrt{2} < x < \sqrt{2}\]
\[имеет\ смысл\ при:\]
\[{1)\ \log_{2}}x^{2} > 0\]
\[\log_{2}x^{2} > \log_{2}1\]
\[x^{2} > 1\]
\[x < - 1\ \ и\ \ x > 1.\]
\[2)\ x^{2} > 0 \Longrightarrow x \neq 0.\]
\[Ответ:\ \ - \sqrt{2} < x < - 1;\ \ \]
\[1 < x < \sqrt{2}.\]
\[2)\log_{3}{\log_{\frac{1}{2}}\left( x^{2} - 1 \right)} < 1\]
\[\log_{3}{\log_{\frac{1}{2}}\left( x^{2} - 1 \right)} < \log_{3}3\]
\[\log_{\frac{1}{2}}\left( x^{2} - 1 \right) < 3\]
\[\log_{\frac{1}{2}}\left( x^{2} - 1 \right) < \log_{\frac{1}{2}}\left( \frac{1}{2} \right)^{3}\]
\[x^{2} - 1 > \left( \frac{1}{2} \right)^{3}\]
\[x^{2} > 1 + \frac{1}{8}\]
\[x^{2} > \frac{9}{8}\]
\[- \frac{3}{2\sqrt{2}} < x < \frac{3}{2\sqrt{2}}\]
\[имеет\ смысл\ при:\]
\[1)\ \log_{\frac{1}{2}}\left( x^{2} - 1 \right) > 0\]
\[\log_{\frac{1}{2}}\left( x^{2} - 1 \right) > \log_{\frac{1}{2}}1\]
\[x^{2} - 1 < 1\]
\[x^{2} < 2\]
\[- \sqrt{2} < x < \sqrt{2}.\]
\[2)\ x^{2} - 1 > 0\]
\[x^{2} > 1\]
\[x < - 1;\text{\ \ }x > 1.\]
\[Ответ:\ \ - \sqrt{2} < x < - \frac{3}{2\sqrt{2}};\ \ \]
\[\frac{3}{2\sqrt{2}} < x < \sqrt{2}.\]