Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 361

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 361

\[\boxed{\mathbf{361}\mathbf{.}}\]

\[1)\lg\left( x^{2} - 8x + 13 \right) > 0\]

\[\lg\left( x^{2} - 8x + 13 \right) > \lg 1\]

\[x^{2} - 8x + 13 > 1\]

\[x^{2} - 8x + 12 > 0\]

\[D = 8^{2} - 4 \bullet 12 = 64 - 48 = 16\]

\[x_{1} = \frac{8 - 4}{2} = 2;\text{\ \ }x_{2} = \frac{8 + 4}{2} = 6.\]

\[(x - 2)(x - 6) > 0\]

\[x < 2\ \ и\ \ x > 6.\]

\[имеет\ смысл\ при:\]

\[x^{2} - 8x + 13 > 0\]

\[D = 8^{2} - 4 \bullet 13 = 64 - 52 = 12\]

\[x = \frac{8 \pm \sqrt{12}}{2} = \frac{8 \pm 2\sqrt{3}}{2} =\]

\[= 4 \pm \sqrt{3}.\]

\[x < 4 - \sqrt{3};\text{\ \ }x > 4 + \sqrt{3}.\]

\[Ответ:\ \ x < 2;\ \ x > 6.\]

\[2)\log_{\frac{1}{5}}\left( x^{2} - 5x + 7 \right) < 0\]

\[\log_{\frac{1}{5}}\left( x^{2} - 5x + 7 \right) < \log_{\frac{1}{5}}1\]

\[x^{2} - 5x + 7 > 1\]

\[x^{2} - 5x + 6 > 0\]

\[D = 5^{2} - 4 \bullet 6 = 25 - 24 = 1\]

\[x_{1} = \frac{5 - 1}{2} = 2;\text{\ \ }x_{2} = \frac{5 + 1}{2} = 3.\]

\[(x - 2)(x - 3) > 0\]

\[x < 2\ \ и\ \ x > 3.\]

\[\ имеет\ смысл\ при:\]

\[x^{2} - 5x + 7 > 0\]

\[D = 5^{2} - 4 \bullet 7 = 25 - 28 =\]

\[= - 3 < 0\]

\[a = 1 > 0 \Longrightarrow x - любое\ число.\]

\[Ответ:\ \ x < 2;\ \ x > 3.\]

\[3)\log_{2}\left( x^{2} + 2x \right) < 3\]

\[\log_{2}\left( x^{2} + 2x \right) < \log_{2}2^{3}\]

\[x^{2} + 2x < 2^{3}\]

\[x^{2} + 2x < 8\]

\[x^{2} + 2x - 8 < 0\]

\[D = 2^{2} + 4 \bullet 8 = 4 + 32 = 36\]

\[x_{1} = \frac{- 2 - 6}{2} = - 4;\text{\ \ }\]

\[x_{2} = \frac{- 2 + 6}{2} = 2.\]

\[(x + 4)(x - 2) < 0\]

\[- 4 < x < 2.\]

\[имеет\ смысл\ при:\]

\[x^{2} + 2x > 0\]

\[(x + 2) \bullet x > 0\]

\[x < - 2;\text{\ \ }x > 0.\]

\[Ответ:\ \ - 4 < x < - 2;\ \ \]

\[0 < x < 2.\]

\[4)\log_{\frac{1}{2}}\left( x^{2} - 5x - 6 \right) \geq - 3\]

\[\log_{\frac{1}{2}}\left( x^{2} - 5x - 6 \right) \geq \log_{\frac{1}{2}}\left( \frac{1}{2} \right)^{- 3}\]

\[x^{2} - 5x - 6 \leq \left( \frac{1}{2} \right)^{- 3}\]

\[x^{2} - 5x - 6 \leq 8\]

\[x^{2} - 5x - 14 \leq 0\]

\[D = 5^{2} + 4 \bullet 14 = 25 + 56 = 81\]

\[x_{1} = \frac{5 - 9}{2} = - 2;\text{\ \ }\]

\[x_{2} = \frac{5 + 9}{2} = 7.\]

\[(x + 2)(x - 7) \leq 0\]

\[- 2 \leq x \leq 7\]

\[имеет\ смысл\ при:\]

\[x^{2} - 5x - 6 > 0\]

\[D = 5^{2} + 4 \bullet 6 = 25 + 24 = 49\]

\[x_{1} = \frac{5 - 7}{2} = - 1;\text{\ \ }\]

\[x_{2} = \frac{5 + 7}{2} = 6.\]

\[(x + 1)(x - 6) > 0\]

\[x < - 1;\text{\ \ }x > 6.\]

\[Ответ:\ \ - 2 \leq x < - 1;\ \ \]

\[6 < x \leq 7.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам