\[\boxed{\mathbf{350}\mathbf{.}}\]
\[1)\lg\left( 6 \bullet 5^{x} - 25 \bullet 20^{x} \right) - \lg 25 =\]
\[= x\]
\[\lg\frac{6 \bullet 5^{x} - 25 \bullet 20^{x}}{25} = \lg 10^{x}\]
\[\frac{6 \bullet 5^{x} - 25 \bullet 20^{x}}{25} = 10^{x}\]
\[6 \bullet 5^{x} - 25 \bullet 20^{x} = 25 \bullet 10^{x}\]
\[25 \bullet 2^{x} + 25 \bullet 4^{x} - 6 = 0\]
\[25 \bullet 2^{2x} + 25 \bullet 2^{x} - 6 = 0\]
\[Пусть\ y = 2^{x}:\]
\[25y^{2} + 25y - 6 = 0\]
\[D = 25^{2} + 4 \bullet 25 \bullet 6 =\]
\[= 625 + 600 = 1225\]
\[y_{1} = \frac{- 25 - 35}{2 \bullet 25} = - \frac{60}{50} = - \frac{6}{5};\]
\[y_{2} = \frac{- 25 + 35}{2 \bullet 25} = \frac{10}{50} = \frac{1}{5}.\]
\[1)\ 2^{x} = - \frac{6}{5}\]
\[нет\ корней.\]
\[2)\ 2^{x} = \frac{1}{5}\]
\[2^{x} = 5^{- 1}\]
\[\log_{2}2^{x} = \log_{2}5^{- 1}\]
\[x = - \log_{2}5.\]
\[Ответ:\ \ x = - \log_{2}5.\]
\[2)\lg\left( 2^{x} + x + 4 \right) = x - x\lg 5\]
\[\lg\left( 2^{x} + x + 4 \right) = \lg 10^{x} - \lg 5^{x}\]
\[\lg\left( 2^{x} + x + 4 \right) = \lg\left( \frac{10}{5} \right)^{x}\]
\[2^{x} + x + 4 = \left( \frac{10}{5} \right)^{x}\]
\[2^{x} + x + 4 = 2^{x}\]
\[x + 4 = 0\ \]
\[x = - 4.\]
\[Ответ:\ \ x = - 4.\]