\[\boxed{\mathbf{347}\mathbf{.}}\]
\[1)\ \left\{ \begin{matrix} \lg x - \lg y = 7 \\ \lg x + \lg y = 5 \\ \end{matrix} \right.\ \ +\]
\[\lg x + \lg x - \lg y + \lg y = 7 + 5\]
\[2\lg x = 12\]
\[\lg x = 6\]
\[\lg x = \lg 10^{6}\]
\[x = 10^{6}\]
\[x = 1\ 000\ 000.\]
\[Значение\ y:\]
\[\lg x + \lg y = 5\]
\[6 + \lg y = 5\]
\[\lg y = - 1\]
\[\lg y = \lg 10^{- 1}\]
\[y = 10^{- 1} = 0,1\]
\[Ответ:\ \ (1\ 000\ 000;\ 0,1).\]
\[2)\ \left\{ \begin{matrix} \log_{2}x + \frac{1}{2}\log_{2}\frac{1}{y} = 4 \\ xy = 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} \log_{2}x + \log_{2}\left( \frac{1}{y} \right)^{\frac{1}{2}} = 4 \\ y = \frac{2}{x}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[\log_{2}x + \log_{2}\left( \frac{x}{2} \right)^{\frac{1}{2}} = 4\]
\[\log_{2}\left( x \bullet \left( \frac{x}{2} \right)^{\frac{1}{2}} \right) = \log_{2}2^{4}\]
\[x \bullet \left( \frac{x}{2} \right)^{\frac{1}{2}} = 2^{4}\]
\[x^{1 + \frac{1}{2}} = 2^{4 + \frac{1}{2}}\]
\[x^{\frac{3}{2}} = 2^{\frac{9}{2}}\]
\[x^{3} = 2^{9}\]
\[x = 2^{3} = 8;\]
\[y = \frac{2}{8} = \frac{1}{4} = 0,25.\]
\[Ответ:\ \ (8;\ 0,25).\]