\[\boxed{\mathbf{346}\mathbf{.}}\]
\[1)\ 2^{3x + 1} = 2^{- 3}\text{\ \ }и\ \ 3x + 1 = - 3\]
\[2^{3x + 1} = 2^{- 3}\]
\[\log_{2}2^{3x + 1} = \log_{2}2^{- 3}\]
\[3x + 1 = - 3\]
\[Ответ:\ \ равносильны.\]
\[2)\ \log_{3}(x - 1) = 2\ \ и\ \ x - 1 = 9\]
\[\log_{3}(x - 1) = 2\]
\[\log_{3}(x - 1) = \log_{3}3^{2}\]
\[x - 1 = 3^{2}\]
\[x - 1 = 9\]
\[Ответ:\ \ равносильны.\]