\[\boxed{\mathbf{310}\mathbf{.}}\]
\[\log_{6}2 = m;\ \ \ \log_{24}72 = ?\ \ \]
\[\log_{24}72 = \frac{\log_{6}72}{\log_{6}24} =\]
\[= \frac{\log_{6}(2 \bullet 36)}{\log_{6}(4 \bullet 6)} =\]
\[= \frac{\log_{6}2 + \log_{6}36}{\log_{6}4 + \log_{6}6} =\]
\[= \frac{m + \log_{6}6^{2}}{\log_{6}2^{2} + 1} = \frac{m + 2}{2\log_{6}2 + 1} =\]
\[= \frac{m + 2}{2m + 1}\]
\[Ответ:\ \ \frac{m + 2}{2m + 1}.\]