\[\boxed{\mathbf{307}\mathbf{.}}\]
\[1)\log_{5}x = 2\log_{5}3 + 4\log_{25}2\]
\[\log_{5}x = \log_{5}3^{2} + 2\log_{5^{2}}2^{2}\]
\[\log_{5}x = \log_{5}9 + \log_{5}4\]
\[\log_{5}x = \log_{5}(9 \bullet 4)\]
\[\log_{5}x = \log_{5}36\]
\[Ответ:\ \ x = 36.\]
\[2)\log_{2}x - 2\log_{\frac{1}{2}}x = 9\]
\[\log_{2}x - 2\log_{2^{- 1}}x = \log_{2}2^{9}\]
\[\log_{2}x + 2\log_{2}x = \log_{2}512\]
\[3\log_{2}x = \log_{2}512\]
\[\log_{2}x^{3} = \log_{2}512\]
\[x^{3} = 512\]
\[x = 8\]
\[Ответ:\ \ x = 8.\]
\[3)\log_{3}x = 9\log_{27}8 - 3\log_{3}4\]
\[\log_{3}x = 3\log_{3^{3}}8^{3} - \log_{3}4^{3}\]
\[\log_{3}x = \log_{3}512 - \log_{3}64\]
\[\log_{3}x = \log_{3}\frac{512}{64}\]
\[\log_{3}x = \log_{3}8\]
\[Ответ:\ \ x = 8.\]
\[4)\log_{9}x^{2} + \log_{\sqrt{3}}x = 3\]
\[2\log_{3^{2}}x + \log_{3^{\frac{1}{2}}}x = \log_{3}3^{3}\]
\[\log_{3}x + 2\log_{3}x = \log_{3}27\]
\[3\log_{3}x = \log_{3}27\]
\[\log_{3}x^{3} = \log_{3}27\]
\[x^{3} = 27\ \]
\[x = 3\]
\[Ответ:\ \ x = 3.\]
\[5)\log_{2}x + \log_{8}x = 8\]
\[\log_{2}x + \log_{2^{3}}x = \log_{2}2^{8}\]
\[\log_{2}x + \frac{1}{3}\log_{2}x = \log_{2}256\]
\[\frac{4}{3}\log_{2}x = \log_{2}256\]
\[\log_{2}x^{\frac{4}{3}} = \log_{2}256\]
\[x^{\frac{4}{3}} = 256\]
\[x^{\frac{1}{3}} = 4\ \]
\[x = 64\]
\[Ответ:\ \ x = 64.\]
\[6)\log_{4}x - \log_{16}x = \frac{1}{4}\]
\[\log_{4}x - \log_{4^{2}}x = \log_{4}4^{\frac{1}{4}}\]
\[\log_{4}x - \frac{1}{2}\log_{4}x = \log_{4}2^{\frac{1}{2}}\]
\[\frac{1}{2}\log_{4}x = \frac{1}{2}\log_{4}2\]
\[\log_{4}x = \log_{4}2\]
\[Ответ:\ \ x = 2.\]