\[\boxed{\mathbf{299}\mathbf{.}}\]
\[a > 0,\ \ \ a \neq 1,\ \ \ b > 0,\ \ \ p \neq 0\]
\[Согласно\ основному\ \]
\[логарифмическому\ тождеству:\]
\[a^{\log_{a^{p}}b} = \left( a^{p\log_{a^{p}}b} \right)^{\frac{1}{p}} = b^{\frac{1}{p}}\]
\[a^{\frac{1}{p}\log_{a}b} = \left( a^{\log_{a}b} \right)^{\frac{1}{p}} = b^{\frac{1}{p}}\]
\[Таким\ образом:\]
\[a^{\log_{a^{p}}b} = a^{\frac{1}{p}\log_{a}b}\]
\[\log_{a^{p}}b = \frac{1}{p}\log_{a}b\]
\[Что\ и\ требовалось\ доказать.\]
\[1)\log_{36}2 - \frac{1}{2}\log_{\frac{1}{6}}3 =\]
\[= \log_{6^{2}}2 - \frac{1}{2}\log_{6^{- 1}}3 =\]
\[= \frac{1}{2}\log_{6}2 + \frac{1}{2}\log_{6}3 =\]
\[= \frac{1}{2}\log_{6}(2 \bullet 3) = \frac{1}{2}\log_{6}6 =\]
\[= \frac{1}{2} \bullet 1 = 0,5\]
\[2)\ 2\log_{25}30 + \log_{0,2}6 =\]
\[= 2\log_{5^{2}}30 + \log_{\frac{1}{5}}6 =\]
\[= \frac{2}{2}\log_{5}30 + \log_{5^{- 1}}6 =\]
\[= \log_{5}30 - \log_{5}6 = \log_{5}\frac{30}{6} =\]
\[= \log_{5}5 = 1\]