\[\boxed{\mathbf{250}\mathbf{.}}\]
\[1)\ {1,5}^{5x - 7} = \left( \frac{2}{3} \right)^{x + 1}\]
\[\left( \frac{15}{10} \right)^{5x - 7} = \left( \frac{3}{2} \right)^{- (x + 1)}\]
\[\left( \frac{3}{2} \right)^{5x - 7} = \left( \frac{3}{2} \right)^{- x - 1}\]
\[5x - 7 = - x - 1\]
\[6x = 6\]
\[x = 1\]
\[Ответ:\ \ x = 1.\]
\[2)\ {0,75}^{2x - 3} = \left( 1\frac{1}{3} \right)^{5 - x}\]
\[\left( \frac{75}{100} \right)^{2x - 3} = \left( \frac{1 \bullet 3 + 1}{3} \right)^{5 - x}\]
\[\left( \frac{3}{4} \right)^{2x - 3} = \left( \frac{4}{3} \right)^{5 - x}\]
\[\left( \frac{3}{4} \right)^{2x - 3} = \left( \frac{3}{4} \right)^{x - 5}\]
\[2x - 3 = x - 5\]
\[x = - 5 + 3\]
\[x = - 2\]
\[Ответ:\ \ x = - 2.\]
\[3)\ 5^{x^{2} - 5x - 6} = 1\]
\[5^{x^{2} - 5x - 6} = 5^{0}\]
\[x^{2} - 5x - 6 = 0\]
\[D = 5^{2} + 4 \bullet 6 = 25 + 24 = 49\]
\[x_{1} = \frac{5 - 7}{2} = - 1;\ \text{\ \ }\]
\[x_{2} = \frac{5 + 7}{2} = 6.\]
\[Ответ:\ \ x_{1} = - 1;\ \ \ x_{2} = 6.\]
\[4)\ \left( \frac{1}{7} \right)^{x^{2} - 2x - 2} = \frac{1}{7}\]
\[x^{2} - 2x - 2 = 1\]
\[x^{2} - 2x - 3 = 0\]
\[D = 2^{2} + 4 \bullet 3 = 4 + 12 = 16\]
\[x_{1} = \frac{2 - 4}{2} = - 1;\ \text{\ \ }\]
\[x_{2} = \frac{2 + 4}{2} = 3.\]
\[Ответ:\ \ x_{1} = - 1;\ \ \ x_{2} = 3.\]