\[\boxed{\mathbf{238}\mathbf{.}}\]
\[1)\ 11^{\sqrt{x + 6}} > 11^{x}\]
\[\sqrt{x + 6} > x\]
\[x + 6 > x^{2}\]
\[x^{2} - x - 6 < 0\]
\[D = 1^{2} + 4 \bullet 6 = 1 + 24 = 25\]
\[x_{1} = \frac{1 - 5}{2} = - 2;\ \text{\ \ }\]
\[x_{2} = \frac{1 + 5}{2} = 3.\]
\[(x + 2)(x - 3) < 0\]
\[- 1 < x < 3.\]
\[Выражение\ имеет\ смысл:\]
\[x + 6 \geq 0\]
\[x \geq - 6.\]
\[Неравенство\ всегда\ верно:\]
\[x < 0.\]
\[Ответ:\ \ - 6 \leq x < 3.\]
\[2)\ {0,3}^{\sqrt{30 - x}} > {0,3}^{x}\]
\[\sqrt{30 - x} < x\]
\[30 - x < x^{2}\]
\[x^{2} + x - 30 > 0\]
\[D = 1^{2} + 4 \bullet 30 = 1 + 120 = 121\]
\[x_{1} = \frac{- 1 - 11}{2} = - 6;\ \text{\ \ }\]
\[x_{2} = \frac{- 1 + 11}{2} = 5.\]
\[(x + 6)(x - 5) > 0\]
\[x < - 6\ \ x > 5.\]
\[Выражение\ имеет\ смысл:\]
\[30 - x \geq 0\ \]
\[x \leq 30.\]
\[Неравенство\ имеет\ решения:\]
\[x \geq 0.\]
\[Ответ:\ \ 5 < x \leq 30.\]