\[\boxed{\mathbf{233}\mathbf{.}}\]
\[1)\ 9^{x} - 3^{x} - 6 > 0\]
\[3^{2x} - 3^{x} - 6 > 0\]
\[Пусть\ y = 3^{x}:\]
\[y^{2} - y - 6 > 0\]
\[D = 1^{2} + 4 \bullet 6 = 1 + 24 = 25\]
\[y_{1} = \frac{1 - 5}{2} = - 2;\ \text{\ \ }\]
\[y_{2} = \frac{1 + 5}{2} = 3.\]
\[(y + 2)(y - 3) > 0\]
\[y < - 2\ \ \ y > 3.\]
\[1)\ 3^{x} < - 2\]
\[нет\ корней.\]
\[2)\ 3^{x} > 3\]
\[3^{x} > 3^{1}\]
\[x > 1.\]
\[На\ искомом\ отрезке:\]
\[1 < x \leq 3.\]
\[Ответ:\ \ x = 2;\ \ \ 3.\]
\[2)\ 4^{x} - 2^{x} < 12\]
\[2^{2x} - 2^{x} - 12 < 0\]
\[Пусть\ y = 2^{x}:\]
\[y^{2} - y - 12 < 0\]
\[D = 1^{2} + 4 \bullet 12 = 1 + 48 = 49\]
\[y_{1} = \frac{1 - 7}{2} = - 3;\ \text{\ \ }\]
\[y_{2} = \frac{1 + 7}{2} = 4.\]
\[(y + 3)(y - 4) < 0\]
\[- 3 < y < 4.\]
\[1)\ 2^{x} > - 3\]
\[при\ любом\ \text{x.}\]
\[2)\ 2^{x} < 4\]
\[2^{x} < 2^{2}\ \]
\[x < 2.\]
\[На\ искомом\ отрезке:\]
\[- 3 \leq x < 2.\]
\[Ответ:\ \ x = - 3;\ \ - 2;\ \ - 1;\ \ 0;\ \ \ 1.\]
\[3)\ 5^{2x + 1} + 4 \bullet 5^{x} - 1 > 0\]
\[5 \bullet 5^{2x} + 4 \bullet 5^{x} - 1 > 0\]
\[Пусть\ y = 5^{x}:\]
\[5y^{2} + 4y - 1 > 0\]
\[D = 4^{2} + 4 \bullet 5 = 16 + 20 = 36\]
\[y_{1} = \frac{- 4 - 6}{2 \bullet 5} = - \frac{10}{10} = - 1;\ \]
\[y_{2} = \frac{- 4 + 6}{2 \bullet 5} = \frac{2}{10} = \frac{1}{5}.\]
\[(y + 1)\left( y - \frac{1}{5} \right) > 0\]
\[y < - 1;\ \text{\ \ }y > \frac{1}{5}.\]
\[1)\ 5^{x} < - 1\]
\[нет\ корней.\]
\[2)\ 5^{x} > \frac{1}{5}\]
\[5^{x} > 5^{- 1}\]
\[x > - 1.\]
\[На\ искомом\ отрезке:\]
\[- 1 < x \leq 3.\]
\[Ответ:\ \ x = 0;\ \ \ 1;\ \ \ 2;\ \ \ 3.\]
\[4)\ 3 \bullet 9^{x} + 11 \bullet 3^{x} < 4\]
\[3 \bullet 3^{2x} + 11 \bullet 3^{x} - 4 < 0\]
\[Пусть\ y = 3^{x}:\]
\[3y^{2} + 11y - 4 < 0\]
\[D = 11^{2} + 4 \bullet 3 \bullet 4 = 121 + 48 =\]
\[= 169\]
\[y_{1} = \frac{- 11 - 13}{2 \bullet 3} = - \frac{24}{6} = - 4;\ \]
\[y_{2} = \frac{- 11 + 13}{2 \bullet 3} = \frac{2}{6} = \frac{1}{3}.\]
\[(y + 4)\left( y - \frac{1}{3} \right) < 0\]
\[- 4 < y < \frac{1}{3}.\]
\[1)\ 3^{x} > - 4\]
\[при\ любом\ \text{x.}\]
\[2)\ 3^{x} < \frac{1}{3}\]
\[3^{x} < 3^{- 1}\ \]
\[x < - 1.\]
\[На\ искомом\ отрезке:\]
\[- 3 \leq x < - 1.\]
\[Ответ:\ \ x = - 3;\ \ - 2.\]