\[\boxed{\mathbf{226.}}\]
\[4 \bullet \left( \frac{9}{4} \right)^{x} - 13 \bullet \left( \frac{6}{4} \right)^{x} + 9 = 0\]
\[4 \bullet \left( \frac{3}{2} \right)^{2x} - 13 \bullet \left( \frac{3}{2} \right)^{x} + 9 = 0\]
\[Пусть\ y = \left( \frac{3}{2} \right)^{x}:\]
\[4y^{2} - 13y + 9 = 0\ \]
\[D = 13^{2} - 4 \bullet 4 \bullet 9 =\]
\[= 169 - 144 = 25\]
\[y_{1} = \frac{13 - 5}{2 \bullet 4} = \frac{8}{8} = 1;\ \]
\[y_{2} = \frac{13 + 5}{2 \bullet 4} = \frac{18}{8} = \frac{9}{4}.\]
\[1)\ \left( \frac{3}{2} \right)^{x} = 1\]
\[\left( \frac{3}{2} \right)^{x} = \left( \frac{3}{2} \right)^{0}\ \]
\[x = 0.\]
\[2)\ \left( \frac{3}{2} \right)^{x} = \frac{9}{4}\]
\[\left( \frac{3}{2} \right)^{x} = \left( \frac{3}{2} \right)^{2}\ \]
\[x = 2.\]
\[Ответ:\ \ x_{1} = 0;\ \ x_{2} = 2.\]
\[16 \bullet \left( \frac{9}{16} \right)^{x} - 25 \bullet \left( \frac{12}{16} \right)^{x} + 9 = 0\]
\[16 \bullet \left( \frac{3}{4} \right)^{2x} - 25 \bullet \left( \frac{3}{4} \right)^{x} + 9 = 0\]
\[Пусть\ y = \left( \frac{3}{4} \right)^{x}:\]
\[16y^{2} - 25y + 9 = 0\]
\[D = 25^{2} - 4 \bullet 16 \bullet 9 =\]
\[= 625 - 576 = 49\]
\[y_{1} = \frac{25 - 7}{2 \bullet 16} = \frac{18}{32} = \frac{9}{16};\ \]
\[y_{2} = \frac{25 + 7}{2 \bullet 16} = \frac{32}{32} = 1.\]
\[1)\ \left( \frac{3}{4} \right)^{x} = \frac{9}{16}\]
\[\left( \frac{3}{4} \right)^{x} = \left( \frac{3}{4} \right)^{2}\]
\[x = 2.\]
\[2)\ \left( \frac{3}{4} \right)^{x} = 1\]
\[\left( \frac{3}{4} \right)^{x} = \left( \frac{3}{4} \right)^{0}\]
\[x = 0.\]
\[Ответ:\ \ x_{1} = 2;\ \ \ x_{2} = 0.\]
\[3)\ \sqrt[x]{2} \bullet \sqrt[{2x}]{3} = 12\]
\[\sqrt[{2x}]{2^{2}} \bullet \sqrt[{2x}]{3} = 12\]
\[\sqrt[{2x}]{4 \bullet 3} = 12\]
\[\sqrt[{2x}]{12} = 12\]
\[12^{\frac{1}{2x}} = 12^{1}\]
\[\frac{1}{2x} = 1\]
\[2x = 1\ \]
\[x = 0,5.\]
\[Ответ:\ \ x = 0,5.\]
\[4)\ \sqrt[x]{5} \bullet 5^{x} = 25\]
\[5^{\frac{1}{x}} \bullet 5^{x} = 25\]
\[5^{\frac{1}{x} + x} = 5^{2}\]
\[\frac{1}{x} + x = 2\]
\[1 + x^{2} = 2x\]
\[x^{2} - 2x + 1 = 0\]
\[(x - 1)^{2} = 0\]
\[x - 1 = 0\ \]
\[x = 1.\]
\[Ответ:\ \ x = 1.\]