\[\boxed{\mathbf{223}\mathbf{.}}\]
\[1)\ 8 \bullet 4^{x} - 6 \bullet 2^{x} + 1 = 0\]
\[8 \bullet 2^{2x} - 6 \bullet 2^{x} + 1 = 0\]
\(Пусть\ y = 2^{x}:\)
\[8y^{2} - 6y + 1 = 0\ \]
\[D = 6^{2} - 4 \bullet 8 = 36 - 32 = 4\]
\[y_{1} = \frac{6 - 2}{2 \bullet 8} = \frac{4}{16} = \frac{1}{4};\]
\[y_{2} = \frac{6 + 2}{2 \bullet 8} = \frac{8}{16} = \frac{1}{2}.\]
\[1)\ 2^{x} = \frac{1}{4}\]
\[2^{x} = 4^{- 1}\]
\[2^{x} = 2^{- 2}\]
\[x = - 2.\]
\[2)\ 2^{x} = \frac{1}{2}\]
\[2^{x} = 2^{- 1}\]
\[x = - 1.\]
\[Ответ:\ \ x_{1} = - 2;\ \ \ x_{2} = - 1.\]
\[2)\ \left( \frac{1}{4} \right)^{x} + \left( \frac{1}{2} \right)^{x} - 6 = 0\]
\[\left( \frac{1}{2} \right)^{2x} + \left( \frac{1}{2} \right)^{x} - 6 = 0\]
\[Пусть\ y = \left( \frac{1}{2} \right)^{x}:\]
\[y^{2} + y - 6 = 0\]
\[D = 1^{2} + 4 \bullet 6 = 1 + 24 = 25\]
\[y_{1} = \frac{- 1 - 5}{2} = - 3;\ \text{\ \ }\]
\[y_{2} = \frac{- 1 + 5}{2} = 2.\]
\[1)\ \left( \frac{1}{2} \right)^{x} = - 3\]
\[нет\ корней.\]
\[2)\ \left( \frac{1}{2} \right)^{x} = 2\]
\[\left( \frac{1}{2} \right)^{x} = \left( \frac{1}{2} \right)^{- 1}\]
\[x = - 1.\]
\[Ответ:\ \ x = - 1.\]
\[3)\ 13^{2x + 1} - 13^{x} - 12 = 0\]
\[13 \bullet 13^{2x} - 13^{x} - 12 = 0\]
\[Пусть\ y = 13^{x}:\]
\[13y^{2} - y - 12 = 0\]
\[D = 1^{2} + 4 \bullet 13 \bullet 12 =\]
\[= 1 + 624 = 625\]
\[y_{1} = \frac{1 - 25}{2 \bullet 13} = - \frac{24}{26} = - \frac{12}{13};\ \]
\[y_{2} = \frac{1 + 25}{2 \bullet 13} = \frac{26}{26} = 1.\]
\[1)\ 13^{x} = - \frac{12}{13}\]
\[нет\ корней.\]
\[2)\ 13^{x} = 1\]
\[13^{x} = 13^{0}\]
\[x = 0.\]
\[Ответ:\ \ x = 0.\]
\[4)\ 3^{2x + 1} - 10 \bullet 3^{x} + 3 = 0\]
\[3 \bullet 3^{2x} - 10 \bullet 3^{x} + 3 = 0\]
\[Пусть\ y = 3^{x}:\]
\[3y^{2} - 10y + 3 = 0\]
\[D = 10^{2} - 4 \bullet 3 \bullet 3 =\]
\[= 100 - 36 = 64\]
\[y_{1} = \frac{10 - 8}{2 \bullet 3} = \frac{2}{6} = \frac{1}{3};\]
\[y_{2} = \frac{10 + 8}{2 \bullet 3} = \frac{18}{6} = 3.\]
\[1)\ 3^{x} = \frac{1}{3}\ \]
\[3^{x} = 3^{- 1}\ \]
\[x = - 1.\]
\[2)\ 3^{x} = 3\]
\[3^{x} = 3^{1}\]
\[x = 1.\]
\[Ответ:\ \ x = \pm 1.\]
\[5)\ 2^{3x} + 8 \bullet 2^{x} - 6 \bullet 2^{2x} = 0\]
\[2^{x} \bullet \left( 2^{2x} + 8 - 6 \bullet 2^{x} \right) = 0\]
\[2^{2x} - 6 \bullet 2^{x} + 8 = 0\]
\[Пусть\ y = 2^{x}:\]
\[y^{2} - 6y + 8 = 0\]
\[D = 6^{2} - 4 \bullet 8 = 36 - 32 = 4\]
\[y_{1} = \frac{6 - 2}{2} = 2;\text{\ \ \ }y_{2} = \frac{6 + 2}{2} = 4.\]
\[1)\ 2^{x} = 2\]
\[2^{x} = 2^{1}\]
\[x = 1.\]
\[2)\ 2^{x} = 4\]
\[2^{x} = 2^{2}\ \]
\[x = 2.\]
\[Ответ:\ \ x_{1} = 1;\ \ \ x_{2} = 2.\]
\[6)\ 5^{3x + 1} + 34 \bullet 5^{2x} - 7 \bullet 5^{x} = 0\]
\[5^{x} \bullet \left( 5^{2x + 1} + 34 \bullet 5^{x} - 7 \right) = 0\]
\[5 \bullet 5^{2x} + 34 \bullet 5^{x} - 7 = 0\]
\[Пусть\ y = 5^{x}:\]
\[5y^{2} + 34y - 7 = 0\]
\[D = 34^{2} + 4 \bullet 5 \bullet 7 =\]
\[= 1156 + 140 = 1296\]
\[y_{1} = \frac{- 34 - 36}{2 \bullet 5} = - \frac{70}{10} = - 7;\ \]
\[y_{2} = \frac{- 34 + 36}{2 \bullet 5} = \frac{2}{10} = \frac{1}{5}\]
\[1)\ 5^{x} = - 7\]
\[нет\ корней.\]
\[2)\ 5^{x} = \frac{1}{5}\]
\[5^{x} = 5^{- 1}\ \]
\[x = - 1.\]
\[Ответ:\ \ x = - 1.\]