\[\boxed{\mathbf{220}\mathbf{.}}\]
\[1)\ (0,5)^{x^{2} - 4x + 3} = (0,5)^{2x^{2} + x + 3}\]
\[x^{2} - 4x + 3 = 2x^{2} + x + 3\]
\[x^{2} + 5x = 0\]
\[(x + 5)x = 0\]
\[x_{1} = - 5;\ \ x_{2} = 0.\]
\[Ответ:\ \ x_{1} = - 5;\ \ \ x_{2} = 0.\]
\[2)\ (0,1)^{3 + 2x} = (0,1)^{2 - x^{2}}\]
\[3 + 2x = 2 - x^{2}\]
\[x^{2} + 2x + 1 = 0\]
\[(x + 1)^{2} = 0\]
\[x + 1 = 0\ \]
\[x = - 1.\]
\[Ответ:\ \ x = - 1.\]
\[3)\ 3^{\sqrt{x - 6}} = 3^{x}\]
\[\sqrt{x - 6} = x\]
\[x - 6 = x^{2}\]
\[x^{2} - x + 6 = 0\]
\[D = 1^{2} - 4 \bullet 6 = 1 - 24 = - 23\]
\[D < 0 - корней\ нет.\]
\[Ответ:\ \ нет\ решений.\]
\[4)\ \left( \frac{1}{3} \right)^{x} = \left( \frac{1}{3} \right)^{\sqrt{2 - x}}\]
\[x = \sqrt{2 - x}\]
\[x^{2} = 2 - x\]
\[x^{2} + x - 2 = 0\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[x_{1} = \frac{- 1 - 3}{2} = - 2;\ \text{\ \ }\]
\[x_{2} = \frac{- 1 + 3}{2} = 1.\]
\[Выражение\ имеет\ смысл\ при:\]
\[2 - x \geq 0\]
\[x \leq 2.\]
\[Уравнение\ имеет\ решения\ при:\]
\[x \geq 0.\]
\[Ответ:\ \ x = 1.\]