\[\boxed{\mathbf{219}\mathbf{.}}\]
\[1)\ 7^{x - 2} = 3^{2 - x}\]
\[7^{x - 2} = \left( \frac{1}{3} \right)^{- (2 - x)}\]
\[7^{x - 2} = \left( \frac{1}{3} \right)^{x - 2}\]
\[7^{x - 2}\ :\left( \frac{1}{3} \right)^{x - 2} = 1\]
\[(7 \bullet 3)^{x - 2} = (7 \bullet 3)^{0}\]
\[x - 2 = 0\ \]
\[x = 2\]
\[Ответ:\ \ x = 2.\]
\[2)\ 2^{x - 3} = 3^{3 - x}\]
\[2^{x - 3} = \left( \frac{1}{3} \right)^{- (3 - x)}\]
\[2^{x - 3} = \left( \frac{1}{3} \right)^{x - 3}\]
\[2^{x - 3}\ :\left( \frac{1}{3} \right)^{x - 3} = 1\]
\[(2 \bullet 3)^{x - 3} = (2 \bullet 3)^{0}\]
\[x - 3 = 0\]
\[x = 3\]
\[Ответ:\ \ x = 3.\]
\[3)\ 3^{\frac{x + 2}{4}} = 5^{x + 2}\]
\[\sqrt[4]{3^{x + 2}} = 5^{x + 2}\]
\[\frac{\sqrt[4]{3^{x + 2}}}{5^{x + 2}} = 1\]
\[\left( \frac{\sqrt[4]{3}}{5} \right)^{x + 2} = \left( \frac{\sqrt[4]{3}}{5} \right)^{0}\]
\[x + 2 = 0\]
\[x = - 2\]
\[Ответ:\ \ x = - 2.\]
\[4)\ 4^{\frac{x - 3}{2}} = 3^{2(x - 3)}\]
\[\left( \sqrt{4} \right)^{x - 3} = \left( 3^{2} \right)^{x - 3}\]
\[2^{x - 3} = 3^{x - 3}\]
\[\frac{2^{x - 3}}{3^{x - 3}} = 1\]
\[\left( \frac{2}{3} \right)^{x - 3} = \left( \frac{2}{3} \right)^{0}\]
\[x - 3 = 0\ \]
\[x = 3\]
\[Ответ:\ \ x = 3.\]