\[\boxed{\mathbf{196}\mathbf{.}}\]
\[1)\ (0,1)^{\sqrt{2}}\]
\[Функция\ y = (0,1)^{x}\ убывает,\ \]
\[значит:\]
\[y\left( \sqrt{2} \right) < y(0)\]
\[(0,1)^{\sqrt{2}} < (0,1)^{0}\]
\[(0,1)^{\sqrt{2}} < 1.\]
\[2)\ (3,5)^{0,1}\]
\[Функция\ \]
\[y = (3,5)^{0,1}\ возрастает,\ значит:\]
\[y(0,1) > y(0)\]
\[(3,5)^{0,1} > (3,5)^{0}\]
\[(3,5)^{0,1} > 1.\]
\[3)\ \pi^{- 2,7}\]
\[Функция\ y = \pi^{x}\ возрастает,\ \]
\[значит:\]
\[y( - 2,7) < y(0)\]
\[\pi^{- 2,7} < \pi^{0}\]
\[\pi^{- 2,7} < 1.\]
\[4)\ \left( \frac{\sqrt{5}}{5} \right)^{- 1,2}\]
\[\sqrt{5} < 5\]
\[\frac{\sqrt{5}}{5} < 1.\]
\[Функция\ y = \left( \frac{\sqrt{5}}{5} \right)^{x}\ убывает,\ \]
\[значит:\]
\[y( - 1,2) > y(0)\]
\[\left( \frac{\sqrt{5}}{5} \right)^{- 1,2} > \left( \frac{\sqrt{5}}{5} \right)^{0}\]
\[\left( \frac{\sqrt{5}}{5} \right)^{- 1,2} > 1.\]