\[\boxed{\mathbf{177}\mathbf{.}}\]
\[1)\ {0,3}^{\pi},\ \ \ {0,3}^{0,5},\ \ \ {0,3}^{\frac{2}{3}},\ \ \ {0,3}^{3,1315};\]
\[\pi \approx 3,1415926\ldots;\]
\[0,5 = \frac{1}{2} = \frac{3}{6};\]
\[\frac{2}{3} = \frac{4}{6};\]
\[0,5 < \frac{2}{3} < 3,1415 < \pi;\]
\[{0,3}^{\pi},\ \ \ {0,3}^{3,1415},\ \ \ {0,3}^{\frac{2}{3}},\ \ \ {0,3}^{0,5}.\]
\[2)\ \sqrt{2^{\pi}},\ \ \ {1,9}^{\pi},\ \ \ \left( \frac{1}{\sqrt{2}} \right)^{\pi},\ \ \ \pi^{\pi};\]
\[196 < 200 < 225 \Longrightarrow \ \ \ \]
\[\Longrightarrow 14 < \sqrt{200} < 15\ \ \ = > \ \ \ \]
\[= > 1,4 < \sqrt{2} < 1,5;\]
\[\sqrt{2} > 1\ \Longrightarrow \ \ \frac{1}{\sqrt{2}} < 1;\]
\[\pi \approx 3,1415\ldots;\]
\[\frac{1}{\sqrt{2}} < \sqrt{2} < 1,9 < \pi;\]
\[\left( \frac{1}{\sqrt{2}} \right)^{\pi},\ \ \ \sqrt{2^{\pi}},\ \ \ {1,9}^{\pi},\ \ \ \pi^{\pi}.\]
\[3)\ 5^{- 2},\ \ \ 5^{- 0,7},\ \ \ 5^{\frac{1}{3}},\ \ \ \left( \frac{1}{5} \right)^{2,1};\]
\[\left( \frac{1}{5} \right)^{2,1} = 5^{- 2,1};\]
\[- 2,1 < - 2 < - 0,7 < \frac{1}{3};\]
\[\ \left( \frac{1}{5} \right)^{2,1},\ \ \ 5^{- 2},\ \ \ 5^{- 0,7},\ \ \ 5^{\frac{1}{3}}.\]
\[4)\ {0,5}^{- \frac{2}{3}},\ \ \ {1,3}^{- \frac{2}{3}},\ \ \ \pi^{- \frac{2}{3}},\ \ \ \left( \sqrt{2} \right)^{- \frac{2}{3}};\]
\[196 < 200 < 225\ \Longrightarrow \ \]
\[\Longrightarrow \ 14 < \sqrt{200} < 15\ \Longrightarrow \ \ \]
\[\Longrightarrow \ 1,4 < \sqrt{2} < 1,5;\]
\[\pi \approx 3,1415\ldots;\]
\[0,5 < 1,3 < \sqrt{2} < \pi;\]
\[\pi^{- \frac{2}{3}},\ \ \ \left( \sqrt{2} \right)^{- \frac{2}{3}},\ \ \ {1,3}^{- \frac{2}{3}},\ \ \ {0,5}^{- \frac{2}{3}}.\]