\[\boxed{\mathbf{171}\mathbf{.}}\]
\[1)\ \sqrt{x + 1} - \sqrt{x} < \sqrt{x - 1}\]
\[\sqrt{x + 1} - \sqrt{x - 1} < \sqrt{x}\]
\[x < 2\sqrt{x^{2} - 1}\]
\[x^{2} < 4\left( x^{2} - 1 \right)\]
\[x^{2} < 4x^{2} - 4\]
\[- 3x^{2} < - 4\]
\[x^{2} > \frac{4}{3}\]
\[x < - \frac{2}{\sqrt{3}};\ \ x > \frac{2}{\sqrt{3}}.\]
\[Выражение\ имеет\ смысл\ при:\]
\[x + 1 \geq 0\ \ \ \Longrightarrow \ \ x \geq - 1;\]
\[x - 1 \geq 0 \Longrightarrow \ \ x \geq 1.\]
\[x \geq 0.\]
\[Ответ:\ \ x > \frac{2}{\sqrt{3}}.\]
\[2)\ \sqrt{x + 3} < \sqrt{7 - x} + \sqrt{10 - x}\]
\[5x^{2} - 16x - 84 < 0\]
\[D = 16^{2} + 4 \bullet 5 \bullet 84 =\]
\[= 256 + 1680 = 1936\]
\[x_{1} = \frac{16 - 44}{2 \bullet 5} = - \frac{28}{10} = - 2,8\]
\[x_{2} = \frac{16 + 44}{2 \bullet 5} = \frac{60}{10} = 6\]
\[(x + 2,8)(x - 6) < 0\]
\[- 2,8 < x < 6.\]
\[Выражение\ имеет\ смысл\ при:\]
\[x + 3 \geq 0\ \Longrightarrow \ \ x \geq - 3;\]
\[7 - x \geq 0\ \Longrightarrow \ \ \ x \leq 7;\]
\[10 - x \geq 0 \Longrightarrow \ \ \ x \leq 10.\]
\[Ответ:\ \ - 3 \leq x < 6.\]