\[\boxed{\mathbf{170}\mathbf{.}}\]
\[1)\ \sqrt{x + 2} > \sqrt{4 - x}\]
\[x + 2 > 4 - x\]
\[2x > 2\]
\[x > 1.\]
\[Выражение\ имеет\ смысл\ при:\]
\[x + 2 \geq 0\ \Longrightarrow \ \ \ x \geq - 2;\]
\[4 - x \geq 0\ \Longrightarrow \ x \leq 4.\]
\[Ответ:\ \ 1 < x \leq 4.\]
\[2)\ \sqrt{3 + 2x} \geq \sqrt{x + 1}\]
\[3 + 2x \geq x + 1\]
\[x \geq - 2.\]
\[Выражение\ имеет\ смысл\ при:\]
\[3 + 2x \geq 0\ \Longrightarrow x \geq - 1,5;\]
\[x + 1 \geq 0\ \Longrightarrow \ x \geq - 1.\]
\[Ответ:\ \ x \geq - 1.\]
\[3)\ \sqrt{2x - 5} < \sqrt{5x + 4}\]
\[2x - 5 < 5x + 4\]
\[- 3x < 9\]
\[x > - 3.\]
\[Выражение\ имеет\ смысл\ при:\]
\[2x - 5 \geq 0 \Longrightarrow x \geq 2,5;\]
\[5x + 4 \geq 0 \Longrightarrow \ \ x \geq - 0,8.\]
\[Ответ:\ \ x \geq 2,5.\]
\[4)\ \sqrt{3x - 2} > x - 2\]
\[3x - 2 > (x - 2)^{2}\]
\[3x - 2 > x^{2} - 4x + 4\]
\[x^{2} - 7x + 6 < 0\]
\[D = 7^{2} - 4 \bullet 6 = 49 - 24 = 25\]
\[x_{1} = \frac{7 - 5}{2} = 1;\text{\ \ }x_{2} = \frac{7 + 5}{2} = 6\]
\[(x - 1)(x - 6) < 0\]
\[1 < x < 6.\]
\[Выражение\ имеет\ смысл\ при:\]
\[3x - 2 \geq 0\]
\[3x \geq 2\]
\[x \geq \frac{2}{3}.\]
\[Ответ:\ \ \frac{2}{3} \leq x < 6.\]
\[5)\ \sqrt{5x + 11} > x + 3\]
\[5x + 11 > (x + 3)^{2}\]
\[5x + 11 > x^{2} + 6x + 9\]
\[x^{2} + x - 2 < 0\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[x_{1} = \frac{- 1 - 3}{2} = - 2;\text{\ \ }\]
\[x_{2} = \frac{- 1 + 3}{2} = 1\]
\[(x + 2)(x - 1) < 0\]
\[- 2 < x < 1.\]
\[Выражение\ имеет\ смысл\ при:\]
\[5x + 11 \geq 0\]
\[5x \geq - 11\]
\[x \geq - 2,2.\]
\[Ответ:\ \ - 2 < x < 1.\]
\[6)\ \sqrt{3 - x} < \sqrt{3x - 5}\]
\[3 - x < 3x - 5\]
\[- 4x < - 8\]
\[x > 2.\]
\[Выражение\ имеет\ смысл\ при:\]
\[3 - x \geq 0\ \ \Longrightarrow x \leq 3;\]
\[3x - 5 \geq 0\ \Longrightarrow \ x \geq \frac{5}{3}.\]
\[Ответ:\ \ 2 < x \leq 3.\]