\[\boxed{\mathbf{164.}}\]
\[2\sqrt{x^{2} - (6x - 9)} = 6 - 2x\]
\[\sqrt{x^{2} - 6x + 9} = 3 - x\]
\[x^{2} - 6x + 9 = 9 - 6x + x^{2}\]
\[0x = 0 - при\ любом\ x.\]
\[Выражение\ имеет\ смысл\ при:\]
\[6x - 9 \geq 0\]
\[6x \geq 9\]
\[x \geq 1,5.\]
\[Выражение\ имеет\ смысл\ при:\]
\[x - \sqrt{6x - 9} \geq 0\]
\[x \geq \sqrt{6x - 9}\]
\[x^{2} \geq 6x - 9\]
\[x^{2} - 6x + 9 \geq 0\]
\[(x - 3)^{2} \geq 0 - при\ любом\ x.\]
\[Уравнение\ имеет\ решения\ при:\]
\[6 - 2x \geq 0\]
\[3 - x \geq 0\]
\[x \leq 3.\]
\[Ответ:\ \ 1,5 \leq x \leq 3.\]
\[2\sqrt{x^{2} - (x + 11)} = 16 - 2x\]
\[\sqrt{x^{2} - x - 11} = 8 - x\]
\[x^{2} - x - 11 = 64 - 16x + x^{2}\]
\[15x = 75\]
\[x = 5.\]
\[Проверим:\]
\[\sqrt{5 + \sqrt{5 + 11}} + \sqrt{5 - \sqrt{5 + 11}} =\]
\[= \sqrt{5 + \sqrt{16}} + \sqrt{5 - \sqrt{16}} =\]
\[= \sqrt{9} + \sqrt{1} = 4.\]
\[Ответ:\ \ x = 5.\]