\[\boxed{\mathbf{1614}\mathbf{.}}\]
\[1)\log_{|2x + 1|}x^{2} \geq 2\]
\[\log_{\sqrt{(2x + 1)^{2}}}x^{2} \geq \log_{\sqrt{(2x + 1)^{2}}}(2x + 1)^{2}\]
\[\sqrt{(2x + 1)^{2}} > 1\]
\[(2x + 1)^{2} > 1\]
\[4x^{2} + 4x + 1 > 1\]
\[4x^{2} + 4x > 0\]
\[x^{2} + x > 0\]
\[(x + 1) \bullet x > 0\]
\[x < - 1\ \ и\ \ x > 0.\]
\[x < - 1\ или\ x > 0:\]
\[x^{2} \geq (2x + 1)^{2}\]
\[x^{2} \geq 4x^{2} + 4x + 1\]
\[3x^{2} + 4x + 1 \leq 0\]
\[D = 16 - 12 = 4\]
\[x_{1} = \frac{- 4 - 2}{2 \bullet 3} = - 1;\]
\[x_{2} = \frac{- 4 + 2}{2 \bullet 3} = - \frac{2}{6} = - \frac{1}{3};\]
\[(x + 1)\left( x + \frac{1}{3} \right) \leq 0\]
\[- 1 \leq x \leq - \frac{1}{3}.\]
\[- 1 < x < 0:\]
\[x^{2} \leq (2x + 1)^{2}\]
\[(x + 1)\left( x + \frac{1}{3} \right) \geq 0\]
\[x \leq - 1\ \ и\ \ x \geq - \frac{1}{3}.\]
\[Ответ:\ \ - \frac{1}{3} \leq x < 0.\]
\[2)\log_{x^{2}}|3x + 1| < \frac{1}{2}\]
\[2 \bullet \log_{x^{2}}\sqrt{(3x + 1)^{2}} < 1\]
\[\log_{x^{2}}(3x + 1)^{2} < \log_{x^{2}}x^{2}\]
\[x^{2} > 1\]
\[x < - 1\ и\ x > 1.\]
\[x < - 1\ или\ x > 1:\]
\[(3x + 1)^{2} < x^{2}\]
\[9x^{2} + 6x + 1 < x^{2}\]
\[8x^{2} + 6x + 1 < 0\]
\[D = 36 - 32 = 4\]
\[x_{1} = \frac{- 6 - 2}{2 \bullet 8} = - \frac{1}{2};\]
\[x_{2} = \frac{- 6 + 2}{2 \bullet 8} = - \frac{1}{4};\]
\[\left( x + \frac{1}{2} \right)\left( x + \frac{1}{4} \right) < 0\]
\[- \frac{1}{2} < x < - \frac{1}{4}.\]
\[- 1 < x < 1:\]
\[(3x + 1)^{2} > x^{2}\]
\[\left( x + \frac{1}{2} \right)\left( x + \frac{1}{4} \right) > 0\]
\[x < - \frac{1}{2}\text{\ \ }и\ \ x > - \frac{1}{4}.\]
\[Имеет\ смысл\ при:\]
\[x \neq 0\ \ и\ \ x \neq \pm 1.\]
\[Ответ:\ \ - 1 < x < - \frac{1}{2};\ \ \]
\[- \frac{1}{4} < x < 0;\ \ 0 < x < 1.\]