\[\boxed{\mathbf{1613}\mathbf{.}}\]
\[1)\log_{\frac{1}{2}}(1 + x) - \sqrt{x^{2} - 4} \leq 0\]
\[\log_{\frac{1}{2}}(1 + x) \leq \sqrt{x^{2} - 4}\ \ \ \ \ | \bullet ( - 1)\]
\[\log_{2}(1 + x) \geq - \sqrt{x^{2} - 4}\]
\[при\ любом\ x.\]
\[Имеет\ смысл\ при:\]
\[1 + x > 0\]
\[x > - 1.\]
\[x^{2} - 4 \geq 0\]
\[x^{2} \geq 4\]
\[x \leq - 2\ \ и\ \ x \geq 2.\]
\[Ответ:\ \ x \geq 2.\]
\[2)\ \frac{1}{\log_{5}(3 - 2x)} - \frac{1}{4 - \log_{5}(3 - 2x)} < 0\]
\[y = \log_{5}(3 - 2x):\]
\[\frac{1}{y} - \frac{1}{4 - y} < 0\]
\[\frac{4 - y - y}{y(4 - y)} < 0\]
\[2 \bullet \frac{2 - y}{y(4 - y)} < 0\]
\[y \bullet (2 - y) \bullet (4 - y) < 0\]
\[y \bullet (y - 2) \bullet (y - 4) < 0\]
\[y < 0\ \ и\ \ 2 < y < 4.\]
\[1)\ \log_{5}(3 - 2x) < 0\]
\[\log_{5}(3 - 2x) < \log_{5}5^{0}\]
\[3 - 2x < 1\]
\[2x > 2\]
\[x > 1.\]
\[2)\ \log_{5}(3 - 2x) > 2\]
\[\log_{5}(3 - 2x) > \log_{5}5^{2}\]
\[3 - 2x > 25\]
\[2x < - 22\]
\[x < - 11.\]
\[3)\ \log_{5}(3 - 2x) < 4\]
\[\log_{5}(3 - 2x) < \log_{5}5^{4}\]
\[3 - 2x < 625\]
\[2x > - 622\]
\[x > - 311.\]
\[Имеет\ смысл\ при:\]
\[3 - 2x > 0\]
\[2x < 3\]
\[x < 1,5.\]
\[Ответ:\ \ - 311 < x < - 11;\ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }1 < x < 1,5.\]