\[\boxed{\mathbf{1603}\mathbf{.}}\]
\[\sin^{4}x + \sin^{4}\left( x + \frac{\pi}{4} \right) = \sin^{2}\frac{25\pi}{6}\]
\[\sin^{4}x + \left( \sin^{2}\left( x + \frac{\pi}{4} \right) \right)^{2} =\]
\[= \sin^{2}\left( 4\pi + \frac{\pi}{6} \right)\]
\[\sin^{4}x + \left( \frac{1 - \cos\left( 2x + \frac{\pi}{2} \right)}{2} \right)^{2} = \sin^{2}\frac{\pi}{6}\]
\[\sin^{4}x + \frac{\left( 1 + \sin{2x} \right)^{2}}{4} = \left( \frac{1}{2} \right)^{2}\]
\[4\left( \sin^{2}x \right)^{2} + 1 + 2\sin{2x} + \sin^{2}{2x} = 1\]
\[4 \bullet \left( \frac{1 - \cos{2x}}{2} \right)^{2} + 2\sin{2x} + \sin^{2}{2x} = 0\]
\[\left( 1 - 2\cos{2x} + \cos^{2}{2x} \right) + 2\sin{2x} + \sin^{2}{2x} = 0\]
\[1 + \left( \cos^{2}{2x} + \sin^{2}{2x} \right) + 2\left( \sin{2x} - \cos{2x} \right) = 0\]
\[2 + 2\left( \sin{2x} - \cos{2x} \right) = 0\]
\[\sin{2x} - \cos{2x} = - 1\ \ \ \ \ |\ :\sqrt{2}\]
\[\frac{\sqrt{2}}{2}\sin{2x} - \frac{\sqrt{2}}{2}\cos{2x} = - \frac{\sqrt{2}}{2}\]
\[\sin\frac{\pi}{4} \bullet \sin{2x} - \cos\frac{\pi}{4} \bullet \cos{2x} = - \frac{\sqrt{2}}{2}\]
\[- \cos\left( \frac{\pi}{4} + 2x \right) = - \frac{\sqrt{2}}{2}\]
\[\cos\left( \frac{\pi}{4} + 2x \right) = \frac{\sqrt{2}}{2}\]
\[\frac{\pi}{4} + 2x = \pm \arccos\frac{\sqrt{2}}{2} + 2\pi n\]
\[\frac{\pi}{4} + 2x = \pm \frac{\pi}{4} + 2\pi n.\]
\[{2x}_{1} = - \frac{\pi}{4} - \frac{\pi}{4} + 2\pi n\]
\[2x_{1} = - \frac{\pi}{2} + 2\pi n\]
\[x_{1} = - \frac{\pi}{4} + \pi n.\]
\[2x_{2} = + \frac{\pi}{4} - \frac{\pi}{4} + 2\pi n\]
\[2x_{2} = 2\pi n\]
\[x_{2} = \pi n.\]
\[Имеет\ решения\ при:\]
\[\lg\left( x - \sqrt{2x + 24} \right) > 0\]
\[\lg\left( x - \sqrt{2x + 24} \right) > \lg 10^{0}\]
\[x - \sqrt{2x + 24} > 1\]
\[x - 1 > \sqrt{2x + 24}\]
\[x^{2} - 2x + 1 > 2x + 24\]
\[x^{2} - 4x - 23 > 0\]
\[D = 16 + 92 = 108 = 4 \bullet 27\]
\[x = \frac{4 \pm \sqrt{108}}{2} = \frac{4 \pm 2\sqrt{27}}{2} =\]
\[= 2 \pm \sqrt{27}\]
\[(x - \left( 2 - \sqrt{27} \right))(x - \left( 2 + \sqrt{27} \right) > 0\]
\[x < 2 - \sqrt{27}\text{\ \ }и\ \ x > 2 + \sqrt{27}.\]
\[x - \sqrt{2x + 24} > 0\]
\[x > \sqrt{2x + 24}\]
\[x^{2} > 2x + 24\]
\[x^{2} - 2x - 24 > 0\]
\[D = 4 + 96 = 100\]
\[x_{1} = \frac{2 - 10}{2} = - 4;\]
\[x_{2} = \frac{2 + 10}{2} = 6;\]
\[(x + 4)(x - 6) > 0\]
\[x < - 4\ \ и\ \ x > 6.\]
\[Имеет\ смысл\ при:\]
\[2x + 24 > 0\]
\[x + 12 > 0\]
\[x > - 12.\]
\[x - 1 > 0\]
\[x > 1.\]
\[Имеем:\ \ \]
\[x > 6.\]
\[Ответ:\ \ x = \pi n;\ \ \]
\[x = - \frac{\pi}{4} + \pi n;\ \ n > 2.\ \ \]