\[\boxed{\mathbf{1602}\mathbf{.}}\]
\[\cos x + \left( 1 + \cos x \right) \bullet tg^{2}\ x - 1 = 0\]
\[\frac{- 2\cos^{2}x + \cos x + 1}{\cos^{2}x} = 0\]
\[2\cos^{2}x - \cos x - 1 = 0\]
\[y = \cos x:\]
\[2y^{2} - y - 1 = 0\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[y_{1} = \frac{1 - 3}{2 \bullet 2} = - \frac{2}{4} = - \frac{1}{2};\]
\[y_{2} = \frac{1 + 3}{2 \bullet 2} = \frac{4}{4} = 1.\]
\[1)\ \cos x = - \frac{1}{2};\]
\[x = \pm \left( \pi - \arccos\frac{1}{2} \right) + 2\pi n\]
\[x = \pm \left( \pi - \frac{\pi}{3} \right) + 2\pi n\]
\[x = \pm \frac{2\pi}{3} + 2\pi n;\]
\[x_{1} = - \frac{2\pi}{3} + 2\pi n =\]
\[= \frac{\pi}{3} - \pi + 2\pi n =\]
\[= \frac{\pi}{3} + (2n - 1)\pi;\]
\[x_{2} = \frac{2\pi}{3} + 2\pi n =\]
\[= - \frac{\pi}{3} + \pi + 2\pi n =\]
\[= - \frac{\pi}{3} + (2n + 1)\pi.\]
\[2)\ \cos x = 1\]
\[x = \arccos 1 + 2\pi n = 2\pi n.\]
\[Имеет\ решения\ при:\]
\[\text{tg\ x} > 0\]
\[arctg\ 0 + \pi n < x < \frac{\pi}{2} + \pi n\]
\[\pi n < x < \frac{\pi}{2} + \pi n.\]
\[Ответ:\ \ \frac{\pi}{3} + (2n + 1)\text{π.}\]