\[\boxed{\mathbf{1595}\mathbf{.}}\]
\[1)\ \sqrt{x + 3} - \sqrt{2x - 4} = \sqrt{3x - 2}\]
\[(x + 3) - 2\sqrt{(x + 3)(2x - 4)} + (2x - 4) =\]
\[= 3x - 2\]
\[x + 3 + 2x - 4 - 3x + 2 =\]
\[= 2\sqrt{(x + 3)(2x - 4)}\]
\[1 = 2\sqrt{(x + 3)(2x - 4)}\]
\[1 = 4(x + 3)(2x - 4)\]
\[4\left( 2x^{2} - 4x + 6x - 12 \right) - 1 = 0\]
\[8x^{2} + 8x - 48 - 1 = 0\]
\[8x^{2} + 8x - 49 = 0\]
\[D = 64 + 1568 = 1632 = 16 \bullet 102\]
\[x = \frac{- 8 \pm \sqrt{1632}}{2 \bullet 8} =\]
\[= \frac{- 8 \pm 4\sqrt{102}}{16} = \frac{- 2 \pm \sqrt{102}}{4}.\]
\[Имеет\ смысл\ при:\]
\[x + 3 \geq 0 \rightarrow x \geq - 3;\]
\[2x - 4 \geq 0 \rightarrow x \geq 2;\]
\[3x - 2 \geq 0 \rightarrow x \geq \frac{2}{3}.\]
\[Под\ знаком\ корня:\]
\[100 < 102 < 121\]
\[10 < \sqrt{102} < 11.\]
\[Ответ:\ \ x = \frac{\sqrt{102} - 2}{4}.\]
\[2)\ \frac{1}{1 - \sqrt{1 - x}} + \frac{1}{1 + \sqrt{1 - x}} =\]
\[= \frac{2\sqrt{2}}{\sqrt{1 - x}}\]
\[y = \sqrt{1 - x}:\]
\[\frac{1}{1 - y} + \frac{1}{1 + y} = \frac{2\sqrt{2}}{y}\ \ \ \ \ | \bullet y(1 - y)(1 + y)\]
\[y(1 + y) + y(1 - y) =\]
\[= 2\sqrt{2}(1 - y)(1 + y)\]
\[y + y^{2} + y - y^{2} = 2\sqrt{2}\left( 1 - y^{2} \right)\]
\[2y = 2\sqrt{2} - 2\sqrt{2}y^{2}\]
\[2\sqrt{2}y^{2} + 2y - 2\sqrt{2} = 0\ \ \ \ \ |\ :\sqrt{2}\]
\[2y^{2} + \sqrt{2}y - 2 = 0\]
\[D = 2 + 16 = 18 = 9 \bullet 2\]
\[y_{1} = \frac{- \sqrt{2} - \sqrt{18}}{2 \bullet 2} =\]
\[= \frac{- \sqrt{2} - 3\sqrt{2}}{4} = - \frac{4\sqrt{2}}{4} = - \sqrt{2};\]
\[y_{2} = \frac{- \sqrt{2} + \sqrt{18}}{2 \bullet 2} =\]
\[= \frac{- \sqrt{2} + 3\sqrt{2}}{4} = \frac{2\sqrt{2}}{4} = \frac{\sqrt{2}}{2}.\]
\[1)\ \sqrt{1 - x} = - \sqrt{2}\]
\[корней\ нет.\]
\[2)\ \sqrt{1 - x} = \frac{\sqrt{2}}{2}\]
\[1 - x = \frac{2}{4}\]
\[x = 1 - \frac{2}{4} = \frac{1}{2}.\]
\[Имеет\ смысл\ при:\]
\[1 - x > 0\]
\[x < 1.\]
\[Ответ:\ \ x = \frac{1}{2}.\]