\[\boxed{\mathbf{1594}\mathbf{.}}\]
\[f(x) = \sin x;\text{\ y} = 0;\]
\[x = \frac{\pi}{2}\ \left( 0 \leq x \leq \frac{\pi}{2} \right).\]
\[Пересечение\ с\ осью\ Ox\ (y = 0):\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[На\ искомом\ отрезке:\ \ \]
\[x = 0.\]
\[Площадь:\]
\[\int_{0}^{\frac{\pi}{2}}{\sin x} = \left. \ - \cos x \right|_{0}^{\frac{\pi}{2}} =\]
\[= - \cos\frac{\pi}{2} + \cos 0 = - 0 + 1 = 1.\]
\[Уравнение\ прямой;\ O(0;\ 0):\]
\[y = kx = tg\ a \bullet x;\]
\[a - искомый\ угол.\]
\[Прямая\ y = kx\ образовывает\]
\[\ с\ прямой\ y = \frac{\pi}{2}\ и\ осью\ \text{Ox}\]
\[фигуру,\ площадь\ которой = \ \frac{1}{2}:\]
\[\int_{0}^{\frac{\pi}{2}}(tg\ a \bullet x) = \left( tg\ a \bullet \frac{x^{2}}{2} \right)_{0}^{\frac{\pi}{2}} =\]
\[= tg\ a \bullet \left( \frac{\pi}{2} \right)^{2}:\ 2 - tg\ a \bullet \frac{0^{2}}{2} =\]
\[= tg\ a \bullet \frac{\pi^{2}}{8} = \frac{1}{2};\]
\[tg\ a = \frac{8}{2\pi^{2}} = \ \frac{4}{\pi^{2}}\]
\[a = arctg\frac{4}{\pi^{2}}.\]
\[Ответ:\ \ \ arctg\frac{4}{\pi^{2}}.\]