\[\boxed{\mathbf{1586}\mathbf{.}}\]
\[f(x) = 3\cos{5x};\]
\[y = 5\cos{3x} + 2.\]
\[f^{'}(x) = 3\left( \cos{5x} \right)^{'} =\]
\[= 3 \bullet \left( - 5\sin{5x} \right) = - 15\sin{5x};\]
\[g^{'}(x) = 5\left( \cos{3x} \right)^{'} + (2)^{'} =\]
\[= 5 \bullet \left( - 3\sin{3x} \right) + 0 =\]
\[= - 15\sin{3x};\]
\[Касательные\ параллельны:\]
\[- 15\sin{5x} = - 15\sin{3x}\]
\[\sin{5x} = \sin{3x}\]
\[\sin{5x} - \sin{3x} = 0\]
\[2 \bullet \sin\frac{5x - 3x}{2} \bullet \cos\frac{5x + 3x}{2} = 0\]
\[\sin x \bullet \cos{4x} = 0.\]
\[1)\ \sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[2)\ \cos{4x} = 0\]
\[4x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{4} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{8} + \frac{\text{πn}}{4}.\]
\[Ответ:\ \ \pi n;\ \ \frac{\pi}{8} + \frac{\text{πn}}{4}.\]