\[\boxed{\mathbf{1581}\mathbf{.}}\]
\[1)\ y = \frac{2}{(x - 1)(x - 3)} =\]
\[= \frac{2}{x^{2} - 3x - x + 3} =\]
\[= \frac{2}{x^{2} - 4x + 3};\]
\[x - 1 \neq 0 \rightarrow x \neq 1;\]
\[x - 3 \neq 0 \rightarrow x \neq 3;\]
\[D(x) = ( - \infty;\ 1) \cup (1;\ 3) \cup (3;\ + \infty).\]
\[f^{'}(x) = 2 \bullet {\left( x^{2} - 4x + 3 \right)^{- 1}}^{'} =\]
\[= 2 \bullet (2x - 4) \bullet ( - 1) \bullet \left( x^{2} - 4x + 3 \right)^{- 2} =\]
\[= \frac{- 2(2x - 4)}{\left( x^{2} - 4x + 3 \right)^{2}} =\]
\[= \frac{8 - 4x}{\left( x^{2} - 4x + 3 \right)^{2}}.\]
\[Промежуток\ возрастания:\]
\[8 - 4x > 0\]
\[2 - x > 0\]
\[x < 2.\]
\[x = 2 - точка\ максимума.\]
\[y(2) = \frac{2}{(2 - 1)(2 - 3)} =\]
\[= \frac{2}{1 \bullet ( - 1)} = - 2.\]
\[\lim_{x \rightarrow \infty}\frac{2}{x^{2} - 4x + 3} =\]
\[= \lim_{x \rightarrow \infty}\frac{\frac{2}{x^{2}}}{1 - \frac{4}{x} + \frac{3}{x^{2}}} =\]
\[= \frac{0}{1 - 0 + 0} = 0.\]
\[2)\ y = \frac{1}{\cos x}\]
\[\cos x \neq 0;\]
\[x \neq \arccos 0 + \pi n \neq \frac{\pi}{2} + \pi n.\]
\[y^{'}(x) = \left( \cos x \right)^{- 1} =\]
\[= ( - 1) \bullet \left( - \sin x \right) \bullet \left( \cos x \right)^{- 2} =\]
\[= \frac{\sin x}{\cos^{2}x}.\]
\[Промежуток\ возрастания:\]
\[\sin x > 0\]
\[\arcsin 0 + 2\pi n < x < \pi - \arcsin 0 + 2\pi n\]
\[2\pi n < x < \pi + 2\pi n.\]
\[x = \pi + 2\pi n - точки\ максимума;\]
\[x = 2\pi n - точки\ минимума.\]
\[Максимум\ и\ минимум:\]
\[y(\pi + 2\pi n) = \frac{1}{\cos(\pi + 2\pi n)} =\]
\[= \frac{1}{\cos\pi} = \frac{1}{- 1} = - 1;\]
\[y(2\pi n) = \frac{1}{\cos(2\pi n)} =\]
\[= \frac{1}{\cos 0} = \frac{1}{1} = 1.\]
\[3)\ y = \frac{1}{\ln x}\]
\[x > 0\]
\[\ln x \neq 0\]
\[x \neq 1;\]
\[D(x) = (0;\ 1) \cup (1;\ + \infty).\]
\[y^{'}(x) = \left( \ln x \right)^{- 1} =\]
\[= ( - 1) \bullet \frac{1}{x} \bullet \left( \ln x \right)^{- 2} = - \frac{1}{x\ln^{2}x}.\]
\[Промежуток\ убывания:\]
\[- x < 0\]
\[x > 0.\]
\[\lim_{x \rightarrow \infty}\frac{1}{\ln x} = 0.\]
\[Функция\ отрицательна:\]
\[\frac{1}{\ln x} < 0\]
\[\ln x < 0\]
\[x < 1.\]