\[\boxed{\mathbf{1578}\mathbf{.}}\]
\[\frac{\sqrt{3x^{3} - 22x^{2} + 40x}}{x - 4} \geq 3x - 10\]
\[x > 4:\]
\[2\frac{2}{3} \leq x \leq 3\frac{1}{3};\text{\ \ }4 \leq x \leq 5.\]
\[x < 4:\]
\[\sqrt{x\left( 3x^{2} - 12x - 10x + 40 \right)} \leq\]
\[\leq (3x - 10)(x - 4)\]
\[\left( x - \frac{8}{3} \right)(3x - 10)(x - 4)(x - 5) \geq 0\]
\[x \leq 2\frac{2}{3};\ 3\frac{1}{3} \leq x \leq 4;x \geq 5.\]
\[Имеет\ смысл\ при:\]
\[x - 4 \neq 0\]
\[x \neq .\]
\[x\left( 3x^{2} - 22x + 40 \right) \geq 0\]
\[x(3x - 10)(x - 4) \geq 0\]
\[0 \leq x \leq 3\frac{1}{3};\text{\ \ }\]
\[x > 4.\]
\[Ответ:\ \ 0 \leq x \leq 2\frac{2}{3};\ \ \]
\[x = 3\frac{1}{3};\ \ 4 < x \leq 5.\]