\[\boxed{\mathbf{1568}\mathbf{.}}\]
\[2x^{3} + mx^{2} + nx + 12 = 0\]
\[x_{1} = 1;\ \ \ x_{2} = - 2:\]
\[4( - 14 - n) - 2n - 4 = 0\]
\[- 56 - 4n - 2n - 4 = 0\]
\[- 6n - 60 = 0\]
\[n + 10 = 0\]
\[n = - 10;\]
\[m = - 14 + 10 = - 4.\]
\[Третий\ корень:\]
\[2x^{3} - 4x^{2} - 10x + 12 = 0\]
\[x^{3} - 2x^{2} - 5x + 6 = 0\]
\[\left( x^{3} - 4x^{2} + 3x \right) + \left( 2x^{2} - 8x + 6 \right) = 0\]
\[x\left( x^{2} - 4x + 3 \right) + 2\left( x^{2} - 4x + 3 \right) = 0\]
\[(x + 2)\left( x^{2} - 4x + 3 \right) = 0\]
\[(x + 2)\left( x^{2} - x - 3x + 3 \right) = 0\]
\[(x + 2)\left( x(x - 1) - 3(x - 1) \right) = 0\]
\[(x + 2)(x - 1)(x - 3) = 0\]
\[x_{1} = - 2;\text{\ \ \ }x_{2} = 1;\text{\ \ \ }x_{3} = 3.\]
\[Ответ:\ \ x_{3} = 3.\]