\[\boxed{\mathbf{1567}\mathbf{.}}\]
\[y = x^{3} - 6x^{2} + 11x - 6\]
\[Пересекает\ ось\ \text{Ox}:\]
\[x^{3} - 6x^{2} + 11x - 6 = 0\]
\[\left( x^{3} - 5x^{2} + 6x \right) - \left( x^{2} - 5x + 6 \right) = 0\]
\[x\left( x^{2} - 5x^{2} + 6x \right) - \left( x^{2} - 5x + 6 \right) = 0\]
\[(x - 1)\left( x^{2} - 5x + 6 \right) = 0\]
\[(x - 1)\left( x^{2} - 3x - 2x + 6 \right) = 0\]
\[(x - 1)\left( x(x - 3) - 2(x - 3) \right) = 0\]
\[(x - 1)(x - 2)(x - 3) = 0\]
\[x_{1} = 1;\text{\ \ \ }x_{2} = 2;\text{\ \ \ }x_{3} = 3.\]
\[Ответ:\ \ да,\ в\ точках\ с\ \]
\[абсциссами\ 1,\ 2\ и\ 3.\]