\[\boxed{\mathbf{1549}\mathbf{.}}\]
\[f(x) = (2x - 3)\left( 3x^{2} + 1 \right);\]
\[f^{'}(x) =\]
\[= (2x - 3)^{'} \bullet \left( 3x^{2} + 1 \right) + (2x - 3) \bullet \left( 3x^{2} + 1 \right)^{'} =\]
\[= 2 \bullet \left( 3x^{2} + 1 \right) + (2x - 3) \bullet (3 \bullet 2x) =\]
\[= 6x^{2} + 2 + 12x^{2} - 18x =\]
\[= 18x^{2} - 18x + 2.\]
\[f^{'}(1) = f^{'}(0):\]
\[f^{'}(1) = 18 \bullet 1^{2} - 18 \bullet 1 + 2 =\]
\[= 18 - 18 + 2 = 2;\]
\[f^{'}(0) = 18 \bullet 0^{2} - 18 \bullet 0 + 2 =\]
\[= 0 - 0 + 2 = 2.\]