\[\boxed{\mathbf{1544}\mathbf{.}}\]
\[1)\ f(x) = \sin{2x} - x;\]
\[f^{'}(x) = \left( \sin{2x} \right)^{'} - (x)^{'} =\]
\[= 2\cos{2x} - 1;\]
\[2\cos{2x} - 1 = 0\]
\[2\cos{2x} = 1\]
\[\cos{2x} = \frac{1}{2}\]
\[2x = \pm \arccos\frac{1}{2} + 2\pi n\]
\[2x = \pm \frac{\pi}{3} + 2\pi n\]
\[x = \frac{1}{2} \bullet \left( \pm \frac{\pi}{3} + 2\pi n \right)\]
\[x = \pm \frac{\pi}{6} + \pi n.\]
\[Ответ:\ \ \pm \frac{\pi}{6} + \pi n.\]
\[2)\ f(x) = \cos{2x} + 2x;\]
\[f^{'}(x) = \left( \cos{2x} \right)^{'} + (2x)^{'} =\]
\[= - 2\sin{2x} + 2;\]
\[- 2\sin{2x} + 2 = 0;\]
\[2\sin{2x} = 2\]
\[\sin{2x} = 1\]
\[2x = \arcsin 1 + 2\pi n\]
\[2x = \frac{\pi}{2} + 2\pi n\]
\[x = \frac{1}{2} \bullet \left( \frac{\pi}{2} + 2\pi n \right)\]
\[x = \frac{\pi}{4} + \pi n.\]
\[Ответ:\ \ \frac{\pi}{4} + \pi n.\]