\[\boxed{\mathbf{1531}\mathbf{.}}\]
\[\mathbf{Схематический\ рисунок}\mathbf{:}\]
\[r - радиус\ основания;\]
\[h - высота\ цилиндра:\]
\[\frac{h}{H} = \frac{(R - r)}{R}\]
\[h = \frac{H(R - r)}{R}.\]
\[V(r) = \pi r^{2} \bullet h =\]
\[= \pi r^{2} \bullet \frac{H(R - r)}{R} =\]
\[= \frac{\text{HRπ}r^{2} - H\pi r^{3}}{R};\]
\[V^{'}(r) = \frac{\text{Hπ}}{R} \bullet \left( R\left( r^{2} \right)^{'} - \left( r^{3} \right)^{'} \right) =\]
\[= \frac{\text{Hπ}}{R} \bullet \left( 2Rr - 3r^{2} \right).\]
\[Промежуток\ возрастания:\]
\[2Rr - 3r^{2} > 0\]
\[r \bullet (2R - 3r) > 0\]
\[r \bullet (3r - 2R) < 0\]
\[0 < r < \frac{2R}{3}.\]
\[r = \frac{2R}{3} - точка\ максимума;\]
\[h = \frac{H\left( R - \frac{2R}{3} \right)}{R} = \frac{H}{R} \bullet \frac{R}{3} = \frac{H}{3}.\]
\[Ответ:\ \ r = \frac{2R}{3};\ \ h = \frac{H}{3}.\]