\[\boxed{\mathbf{1530}\mathbf{.}}\]
\[a - сторона\ основания;\]
\[h - высота\ призмы.\]
\[Ось\ призмы\ пересекает\ центр\ \]
\[сферы\ и\ делится\ ею\]
\[на\ две\ равные\ части:\ \]
\[\left( \frac{a}{\sqrt{3}} \right)^{2} + \left( \frac{h}{2} \right)^{2} = R^{2}\]
\[\frac{a^{2}}{3} + \frac{h^{2}}{4} = R^{2}\]
\[4a^{2} + 3h^{2} = 12R^{2}\]
\[4a^{2} = 12R^{2} - 3h^{2}\]
\[a^{2} = 3R^{2} - \frac{3h^{2}}{4} = \frac{3}{4} \bullet \left( 4R^{2} - h^{2} \right).\]
\[V(h) = S_{осн} \bullet h = \frac{a^{2}\sqrt{3}}{4} \bullet h =\]
\[= \frac{\sqrt{3}h}{4} \bullet \frac{3}{4}\left( 4R^{2} - h^{2} \right) =\]
\[= \frac{3\sqrt{3}}{16} \bullet \left( 4R^{2}h - h^{3} \right);\]
\[V^{'}(h) = \frac{3\sqrt{3}}{16} \bullet \left( 4R^{2}(h)^{'} - \left( h^{3} \right)^{'} \right) =\]
\[= \frac{3\sqrt{3}}{16} \bullet \left( 4R^{2} - 3h^{2} \right).\]
\[Промежуток\ возрастания:\]
\[4R^{2} - 3h^{2} > 0\]
\[3h^{2} < 4R^{2}\]
\[h^{2} < \frac{4R^{2}}{3}\]
\[- \frac{2R}{\sqrt{3}} < h < \frac{2R}{\sqrt{3}}.\]
\[h = \frac{2R}{\sqrt{3}} - точка\ максимума.\]
\[Ответ:\ \ \frac{2R}{\sqrt{3}}.\]