\[\boxed{\mathbf{1522}\mathbf{.}}\]
\[r\ - радиус\ основания;\]
\[h - высота\ цилиндра:\]
\[V = \pi r^{2} \bullet h\]
\[h = \frac{V}{\pi r^{2}}.\]
\[S(r) = \left( 2 \bullet \pi r^{2} \right) + (2\pi r \bullet h) =\]
\[= 2\pi r^{2} + \frac{2\pi r \bullet V}{\pi r^{2}} = 2\pi r^{2} + \frac{2V}{r};\]
\[S^{'}(r) = 2\pi\left( r^{2} \right)^{'} + 2V\left( \frac{1}{r} \right)^{'} =\]
\[= 2\pi \bullet 2r + 2V \bullet \left( - \frac{1}{r^{2}} \right) =\]
\[= \frac{4\pi r^{3} - 2V}{r^{2}}.\]
\[4\pi r^{3} - 2V > 0\]
\[4\pi r^{3} > 2V\]
\[r^{3} > \frac{V}{2\pi}\]
\[r > \sqrt[3]{\frac{V}{2\pi}}.\]
\[r = \sqrt[3]{\frac{V}{2\pi}} - точка\ минимума;\]
\[S(r) = 2\pi \bullet \sqrt[3]{\frac{V^{2}}{4\pi^{2}}} + 2V \bullet \sqrt[3]{\frac{2\pi}{V}} =\]
\[= \sqrt[3]{\frac{8\pi^{3}V^{2}}{4\pi^{2}}} + 2\sqrt[3]{\frac{V^{3} \bullet 2\pi}{V}} =\]
\[= \sqrt[3]{2\pi V^{2}} + 2\sqrt[3]{2\pi V^{2}} = 3\sqrt[3]{2\pi V^{2}}.\]
\[Ответ:\ \ 3\sqrt[3]{2\pi V^{2}}.\]