\[\boxed{\mathbf{1521}\mathbf{.}}\]
\[r\ дм - радиус\ основания\ и\ \]
\[\text{h\ }дм - высота\ конуса.\]
\[Образующая = \ 20\ дм:\]
\[l^{2} = r^{2} + h^{2};\]
\[r^{2} = l^{2} - h^{2} = 20^{2} - h^{2} =\]
\[= 400 - h^{2}.\]
\[V(h) = \frac{1}{3}Sh = \frac{1}{3} \bullet \pi r^{2} \bullet h =\]
\[= \frac{1}{3} \bullet \pi\left( 400 - h^{2} \right) \bullet h =\]
\[= \frac{1}{3}\left( 400\pi h - \pi h^{3} \right);\]
\[V^{'}(h) = \frac{1}{3} \bullet \left( 400\pi(h)^{'} - \pi\left( h^{3} \right)^{'} \right) =\]
\[= \frac{1}{3} \bullet \left( 400\pi - \pi \bullet 3h^{2} \right).\]
\[Промежуток\ возрастания:\]
\[400\pi - 3\pi h^{2} > 0\]
\[400 - 3h^{2} > 0\]
\[3h^{2} < 400\]
\[h^{2} < \frac{400}{3}\]
\[- \frac{20}{\sqrt{3}} < h < \frac{20}{\sqrt{3}}.\]
\[h = \frac{20}{\sqrt{3}} = \frac{20\sqrt{3}}{3} - точка\ \]
\[максимума.\]
\[Ответ:\ \ \ \frac{20\sqrt{3}}{3}\ дм.\]