\[\boxed{\mathbf{1512}\mathbf{.}}\]
\[AB = BC = AC = x;\]
\[\text{SO} = h:\]
\[x + h = SO + AC = 9\]
\[h = 9 - x\]
\[1 \leq x \leq 8.\]
\[V(x) = \frac{1}{3}Sh = \frac{1}{3} \bullet \frac{x^{2}\sqrt{3}}{4} \bullet (9 - x) =\]
\[= \frac{\sqrt{3}}{12} \bullet \left( 9x^{2} - x^{3} \right);\]
\[V^{'}(x) = \frac{\sqrt{3}}{12} \bullet \left( 9\left( x^{2} \right)^{'} - \left( x^{3} \right)^{'} \right) =\]
\[= \frac{\sqrt{3}}{12} \bullet \left( 9 \bullet 2x - 3x^{2} \right) =\]
\[= \frac{3\sqrt{3}}{12} \bullet \left( 6x - x^{2} \right).\]
\[Промежуток\ возрастания:\]
\[6x - x^{2} > 0\]
\[x \bullet (6 - x) > 0\]
\[x \bullet (x - 6) < 0\]
\[0 < x < 6.\]
\[x = 6 - точка\ максимума.\]
\[Ответ:\ \ 6.\]